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1.0 Summary 

The overall technical goal of this project is to develop, test and validate a novel code for Large-
Eddy Simulation (LES) of reacting flows at high speeds. The code consists of two main 
components:  

1. Flow solver: The flow solver is based on a high-order, Discrete Spectral Element Method 
(DSEM) on unstructured grids. Shocks and other discontinuities are simulated using a 
combination of Entropy Viscosity (EV) method and spectral filtering. LES subgrid scale 
effects are accounted for implicitly using explicit filtering with negligible computational 
overhead. 

2. Combustion: Chemical reaction is simulated using Filtered Mass Density Function 
(FMDF) method. This method directly simulates the species transport and provides a 
closed form for the reaction source term. Thermophysical properties are calculated using 
in-house routines developed under this project.  

Full integration of FMDF into the DSEM code is planned for Phase II; however, the integration 
process began in Phase I. During Phase I, a compact Finite Difference (FD) code was used for 
testing various aspects of FMDF. 

This Final Report is composed of three main components. The first component is the 
implementation of the EV method in the DSEM code for 1D scalar transport and 2D Euler 
equations. The second component deals with development of FMDF routines for supersonic 
flow, and includes details of calculation of thermophysical properties and the results for 
hydrogen-air combustion in mixing layers. The third component deals with implementation of 
FMDF in the DSEM code. 

In Phase I, proof of concept was provided in all of the three aforementioned components. In the 
first component, the EV method was extended to DSEM for both 1D scalar transport and 2D 
Euler equations. Several tests were conducted to show the effectiveness of EV in capturing 
shocks and removing spurious oscillations. Spectral filtering, however, proved not to be effective 
in DSEM. In the second component, several routines were developed for calculation of 
thermophysical properties of the reactive species and the mixture. These routines were 
successfully validated in detailed zero-dimensional flow for the stirred reactor. Then, several 
simulations were conducted for combustion of hydrogen-air in two- and three-dimensional 
mixing layers for both subsonic and supersonic flows to demonstrate the capabilities of the new 
FMDF routines. For the third component, the focus in Phase I was on implementation of particle 
tracking algorithm and statistical averaging scheme in the DSEM code. A consistency test was 
conducted for the fluid density in a free mixing layer and it was shown that the Lagrangian 
(FMDF) and Eulerian (DSEM) produce consistent results for density. 
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2.0 Introduction 

In the past few years, several different groups have invested significant efforts to develop 
hypersonic vehicles. In May of 2010, the news media reported the longest-ever supersonic 
combustion ramjet-powered flight. The 200+ second burn by the X-51’s Pratt & Whitney 
Rocketdyne-built air breading scramjet engine accelerated the vehicle to Mach 5. The program 
had a goal for a 300 s flight to Mach 6 but after 140 s of operation some anomalies were noticed, 
requiring the controllers to activate the self-destruct function. While this is a major step to make 
supersonic combustion a reality, it also brings to focus the significant challenges that remain 
ahead in designing supersonic combustion engines. These tests are very expensive to conduct 
and require a long period of preparation. An alternative approach could be provided by modeling 
and simulation but the existing models are too pre-mature for tackling this problem. 

Computational Fluid Dynamics (CFD) is rapidly expanding as a viable design tool in many 
applications in order to minimize/avoid costly experiments. Nevertheless, the rate of penetration 
of CFD into the design sequence has not been the same in all areas. One area of particular 
interest, and yet extremely challenging, involves combustion systems, e.g. internal combustion 
engines, gas turbines, and combustors. The main challenge in these systems arises from the 
presence of turbulence, combustion, and (in some cases) a dispersed phase of droplets or solid 
particulates. Each of these phenomena is characterized by the existence of a wide range of scales, 
and exhibits tremendous difficulty from a modeling/simulation standpoint. Consequently, 
accurate modeling of these phenomena has remained an unresolved issue after decades of 
intensive research.  

The situation is even more complicated in supersonic combustion modeling (e.g. in scramjets 
and afterburners) since the flow residence time in the combustor is considerably short, in the 
order of milliseconds. The high speed of the flow significantly affects the nature of turbulence-
combustion interactions by imposing flow time scales comparable to those of combustion. 
Traditional models built upon the assumption of fast chemistry (as compared to the flow time 
scale) may no longer be valid for supersonic combustion and new models are needed to take into 
account the comparable time scales of the flow and combustion. 

When the reacting flow furthermore contains shocks, the scale range of the continuum flow is 
enormous. The tremendous complexity of the problem has posed the highest of demands on 
numerical methods and models and has left many physical situations not fully understood. 
Improved understanding of shock-turbulence interaction, and control of shocked flows is 
eminent to improving combustor efficiencies, supersonic devices, and high-speed flow 
environments. 

The overall focus of this proposed project is on modeling and simulation of high-speed turbulent 
reacting flows. The Enabling Energy Systems (EES) Inc. has assembled a team of highly 
experienced experts to tackle all the main issues involved in modeling of such complex flows. 
The members of this team are proposing several innovative ideas and have a long history of 
working together with complementary expertise. The ultimate goal of the project is to develop 
advanced CFD software based on a high-order spectral element method on unstructured grids. 
The combustion modeling will be via the accurate, pdf-based, FMDF method that we have 
developed for the LES of turbulent reacting flows. Shock discontinuities will be captured using 
an entropy viscosity approach.  
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In the next section, we explain methods, assumptions, and procedures for each of the three main 
components of this project. This is followed by presentation and discussion of the results. 
Finally, some concluding remarks are provided in the last section.  
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3.0 Methods, Assumptions, and Procedures 

3.1 Implementation of the EV Method for 1D Scalar Equation 

In this section we consider the one-dimensional linear and nonlinear equations for a scalar in 
order to describe the implementation of the EV method into the DSEM code. The simplicity of 
this problem allows us to develop a better understanding of the method. We then extend this 
implementation to the two-dimensional Euler equations in the next section. 

3.1.1 Mathematical Modeling 

We briefly present the mathematical background of the DSEM method for a one-dimensional 
scalar conservation equation as a relevant basis for describing explicit filtering and entropy 
viscosity methods. For a detailed description of the DSEM method, we refer to [1,2]. 

Governing Equations 

We consider the one-dimensional scalar conservation equation with the relevant initial and 
boundary conditions, 

௧ݑ ൅ ௫݂ሺݑሻ ൌ ݔ				,0 ∈ ሾܽ, ܾሿ, ݐ ൐ 0 (1)

,ݔሺݑ 0ሻ ൌ ሻ (2)ݔ଴ሺݑ

,ሺܽݑ ሻݐ ൌ ݃௅ሺݐሻ,							ݑሺܾ, ሻݐ ൌ ݃ோሺݐሻ (3)

Here, we assume the flux has two components: advective flux and diffusive flux that comes from 
the EV method, ݂ ൌ ݂஺ ൅ ݂ா௏. In this project, we consider the linear advection and the 
nonlinear Burgers problems. These two problems can be viewed as two special cases of the 

general Equation (1). If we set ݂ ൌ ݂ and ݑ ൌ 	 ଵ
ଶ
 ଶ in Equation (1) we obtain the linearݑ

advection and the nonlinear Burgers equations, respectively. 

Discontinuous Spectral Element Method 

The DSEM is a collocation method for the solution of compressible flows on staggered grids. 
The solution values are defined at the nodes of a Gauss quadrature rule, and the fluxes are 
computed at the nodes of a Gauss-Lobatto rule. This method is conservative, a feature that is 
desirable for application of shock capturing techniques. Figure 1 shows a representation of 
Gauss-Gauss points and Gauss-Lobatto points in a 1D domain. 

 

 

Figure 1: Staggered Arrangement of Solution Variable and Fluxes 
Open Circles: Gauss-Gauss Quadrature Points, Solid Squares: Gauss-Lobatto Quadrature Points 

In this part of the project, we use the 1D DESM code. The domain ሾܽ, ܾሿ is subdivided into 
multiple non-overlaping subdomains ߗ௞ ൌ 	 ሾܽ௞, ܾ௞ሿ, ݇ ൌ 0,1, … ,  which are ordered left to	,ܭ
right. A linear mapping is used to map the subintervals to a unit interval. Under this 
transformation, Equation (1) can be written on each subinterval as  



 

 
Approved for public release; distribution unlimited. 

5

ො௧ݑ ൅ መ݂
௫ሺݑොሻ ൌ 0 (4)

Where ݑො ൌ  ௑is the mapping operator. Below, we describe our numerical method basedݔ and ݑ௑ݔ
on the mapped Equation (4); however, we drop the ^ for brevity. 

The computational domain (Ω) is represented by the union of non-overlapping elements, Dk, 

Ω ൌ෍ܦ௞ (5)

In each subdomain, the values of the solution or fluxes can be defined on Gauss and Gauss-
Lobatto points: 

ܳሺܺሻ ൌ ∑ ܳ௝ ௝݈ሺܺሻ
ே
௝ୀ଴   (6)

തܳሺܺሻ ൌ ෍ തܳ
௝ାଵଶ ௝݄ାଵଶ

ሺܺሻ
ேିଵ

௝ୀ଴

 (7)

These polynomials interpolate values of any function Qj on the Lobatto grid and the value of 
Qj+1/2 on the Gauss grid. lj  and hj+1/2 are the Lagrange interpolating polynomials of order N and 
N-1 defined on Lobatto and Gauss grid points, respectively, 

௝݈ሺߞሻ ൌෑቆ
ߞ െ ௜ܺ

௝ܺ െ ௜ܺ
ቇ

ே

௜ୀ଴
௜ஷ௝

 (8)

௝݄ାଵ/ଶሺߞሻ ൌෑቆ
ߞ െ തܺ௜ାଵ/ଶ

തܺ௝ାଵ/ଶ െ തܺ௜ାଵ/ଶ
ቇ

ேିଵ

௜ୀ଴
௜ஷ௝

 (9)

The Gauss quadrature points and Gauss-Lobatto quadrature points are, respectively, defined as 

௝ܺ ൌ
1
2
൬1 െ cos ൬

ߨ݆
ܰ
൰൰ 					݆ ൌ 0,1, … ,ܰ (10)

തܺ௝ାଵ/ଶ ൌ
1
2
൬1 െ cos ൬

2݆ ൅ 1
2ܰ ൅ 2

൰൰ߨ 	 ݆ ൌ 0,1, … ,ܰ െ 1 (11)

Element Level Filtering 

In addition to the EV method, we also consider explicit filtering as a part of our approach to 
capture shocks and stabilize the solution while preserving high-order resolution.  We employ an 
element based filtering approach following Blackburn and Schmidt [3]. Since our polynomial 
basis functions do not form a hierarchical set, filtering can be implemented by projecting to a 
lower-order set of basis functions in the same family. Defining I୒

୑ as the operator that 
interpolates a polynomial of order N with Np = N + 1 nodes onto a set of Mp = M + 1 nodal 
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points, we produce the Lagrange-interpolant projector F ൌ I୑
୒I୒

୑. This projects the original nodal 
values Qሺx୩ሻ to another set at the same nodal locations x୩, but derived from the Lagrange 
interpolants through the smaller (M + 1) set of Gauss-Lobatto-Lobatto nodes. The operators 
I୒
୑	and ܫெ

ேcan be derived in any appropriate fashion from the unique polynomials passing through 
the corresponding points.  

The solution of the discretized equations is collocated on nodal points in physical space. If lj are 
the polynomial basis functions then the nodal values of any smooth function Q(x) could be 
represented by the spectral expansion, 

Qሺܺሻ ൌ෍Q௝ ௝݈ሺܺሻ
ே

௝ୀ଴

 (12)

By applying the filtering described above we first project the solution to a lower polynomial 
space and then interpolate them back to higher polynomial space,  

Qfilt=ܫே
ெۿI୑

୒  (13)

Entropy Viscosity Method 

The entropy viscosity method used in this work follows the work of Guermond et al. [4] 
presenting a new method to avoid spurious numerical oscillations in high-order numerical 
approximations for nonlinear conservation laws. This method is founded on the idea of adding an 
artificial nonlinear dissipation term to the numerical discretization as an alternative to previous 
methods like using limiters or non-oscillatory reconstruction. The magnitude of the dissipative 
term is determined based on the local entropy production rate. Since large entropy production 
takes place near shocks, the entropy viscosity term is large in this region and small elsewhere.  

In this report, we focus on scalar conservation equations, which have many entropy pairs and we 
can find at least one entropy function that satisfies an entropy inequality. The entropy satisfies a 
conservation equation in the regions where the solution is not oscillatory, and where we 
experience oscillations or shocks the entropy production will grow and so does artificial 
dissipation term which helps to damp the oscillations and obtain a smooth solution in these 
regions of the flow. For a scalar conservation equation we assume Ω to be an open connected 
domain and consider a model problem in this domain as 

߲௧ݑሺ࢞, ሻݐ ൅ .׏ ,ሺ࢞ݑ൫ࢌ ሻ൯ݐ ൌ 0,								࢞ ∈ Ω, ݐ ൐ 0 (14)

This problem is solved subject to an initial condition and proper boundary conditions. It is well 
known that the initial boundary value problem has a unique entropy solution, which satisfies the 
differential equation  

߲௧ܧሺݑሻ ൅ .׏ ሻݑሺࡲ ൑ 0,								࢞ ∈ 	Ω, ݐ ൐ 0 (15)

for any pairs E and F such that E is convex and ࡲሺݑሻ ൌ ሻݑሺ′ܧ׬  The function E is .ݑሻ݀ݑሺ′ࢌ
called entropy and F is the associated entropy flux. It is proven that for one space dimension 
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ሻݑሺܧ ൌ ௨మ

ଶ
 yields a unique entropy solution.  If we consider an entropy pair (E,F), we define the 

entropy residual as 

,௛ሺ࢞ܦ ሻݐ ൌ ߲௧ܧ൫ݑ௛ሺ࢞, ሻ൯ݐ ൅ .׏ ,௛ሺ࢞ݑ൫ࡲ ,ሻ൯ݐ ࢞ ∈ Ω, ݐ ൐ 0 (16)

And then we define a viscosity, ߥா,	based on this residual 

,ாሺ࢞ߥ ሻݐ ൌ ܿா݄ଶሺ࢞ሻܴሺܦ௛ሺ࢞, ,௛ሺ࢞ݑ൫ܧሻሻ/ฮݐ ሻ൯ݐ െ ,௛ሺ࢞ݑത൫ܧ ሻ൯ฮஐ (17)ݐ

where	݄ሺ࢞ሻ is the local mesh size at ࢞;	ܧത൫ݑ௛ሺ࢞,  ܿா is	ሻ൯ is the space averaged value of entropy;ݐ
a tunable coefficient which depends on the spatial discretization and also the specific problem at 
hand. The simplest function one can consider for ܴ is ܴሺܦ௛ሻ ൌ  ௛| to prevent negative valuesܦ|
for the residual. We also introduce an upper limit for the artificial viscosity 

,௠௔௫ሺ࢞ߥ ሻݐ ൌ ܿ௠௔௫݄௠௔௫ሺ࢞ሻmax|ࢌᇱሺݑሺ࢞, ሻሻ|୻࢞ (18)ݐ

Here   is a neighborhood of x and ࢌᇱሺݑሺ࢞,  ሻሻ is the local wave speed. Then we define theݐ
artificial entropy viscosity as follows: 

௛ߥ ൌ ܵሺminሺߥ௠௔௫, ாሻሻ (19)ߥ

where S is a smoothing operator. The whole procedure is equivalent of adding an artificial 
dissipation term െ׏. ሺߥ௛ݑ׏௛ሻ to the discritized equations.  

3.1.2 Numerical Methodology 

This section briefly describes the implementation of element level filtering and entropy viscosity 
method in the DSEM code. 

Element Level Filtering 

An explicit, low-pass filter is used for filtering operation. Spectral filtering can be constructed 
using either discrete polynomial transform (DPT) or interpolant-projection (see [3]) over each 
element. DPT filtering can be conveniently applied for methods with modal basis. For methods 
with nodal basis, the solution has to be first transformed to modal basis before the DPT filter can 
be applied. Projection filtering on the other hand can be constructed directly on the nodal basis. 
Since it does not require an extra transformation, interpolant-projection filtering is more efficient 
than DPT for methods with nodal basis. Therefore, for our nodal basis we use an interpolant-
projection filter. 

In the interpolant-projection filtering procedure, the filtered variable of degree N is obtained by 
projecting the variable back and forth to a lower order approximation of degree M defined on a 
subset of the original nodal values. As a first step, the original function is interpolated from a 
polynomial degree N to a polynomial of lower degree M, 

Q'ሺxiሻ=෍ lj(xi)Q൫xതj൯

N

j=0

	 (20)



 

 
Approved for public release; distribution unlimited. 

8

where	x୧,	xത୨  are the nodes corresponding to PM and PN, respectively. lj	∈ PN is the Lagrange 
interpolating polynomial. The above operation can be cast in terms of matrix-vector product, 

Qi
' =Iij

intQj 	 (21)

where, 

Iij
int= ෑ

xi-xkഥ
xjഥ-xkഥ

,      i=0,….,M,       j=0…,N

N

k=0,k≠j

	

In the second step, the function ܳᇱሺݔሻ is projected back to the polynomial space N	giving the 
filtered function, 

Qfiltሺxeഥሻ=෍ lf(xeഥ )Q'ሺxfሻ
N

f=0

	 (22)

Again, the above can be cast in matrix-vector form, 

Qe
filt=Ief

proQf
ᇱ	 (23)

where 

Ief
pro ൌ ෑ

xeഥ െ xk

xf-xk

,      e=0,….,N,       f=0…,M

M

k=0,k≠f

 

In the staggered grid method, this interpolation-projection operation could be applied to both the 
nodal sets (Gauss-Gauss and Gauss-Lobatto nodes). We apply the filter on the Gauss-Lobatto 
basis since it preserves the end values of the original function and ensures C0 continuity. 

Entropy Viscosity Method 

In the spectral element method in one space dimension, the domain is divided into non-
overlapping segments. Each subdomain ܭ is an image by a map gK of the reference element ܭ෡ 
=(-1,1). We define the quantity ݄ሺ࢞ሻ	to be the distance between two consecutive collocation 
points. For one space dimension, the defined parameters in the previous section will take the 
following forms: 

݄ሺ࢞࢏ሻ ൌ minห࢞࢏ െ ࢞࢐ห			݅ ് ݆ (24)

ܴሺܦ௛ሺ࢞࢏, ሻሻݐ ൌ ,࢏௛ሺ࢞ܦ| ሻ| (25)ݐ

,ாሺ࢞௜ߥ ሻݐ ൌ ܿா݄ଶሺ࢞௜ሻ
,࢏௛ሺ࢞ܦ| |ሻݐ

ฮܧ൫ݑ௛ሺ࢞௜, ሻ൯ݐ െ ,௛ሺ࢞௜ݑത൫ܧ ሻ൯ฮஐݐ
 (26)

In the above equations, ࢞௜	represents an arbitrary point in one subdomain ܭ. The maximum 
viscosity is defined within an appropriate neighborhood V࢞ ൌ 	ܭ ∋ ࢞. The maximum viscosity is 
defined on each element as 
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ܭ|௠௔௫ߥ ൌ ܿ௠௔௫݄௄max|ࢌᇱሺݑ௛ሺ࢞௜, |ሻሻݐ , ࢞௜ ∈ (27) ܭ

Our numerical experiments show that without using smoothing operator, the results would be 
oscillatory especially for higher polynomial orders. Smoothing is done for each element and we 
use the following smoothing operator 

ܵሺ߮ሻ ൌ
1
4
ሺ߮ሺ࢞௜ିଵሻ ൅ ߮ሺ࢞௜ାଵሻ ൅ ૛߮ሺ࢞௜ሻሻ (28)

The time stepping method used in this work is the low-storage, third-order, Runge-Kutta scheme 
presented by Williamson [6]. The implementation requires that we store the value of the solution 
at Gauss points for two time steps in order to be able to evaluate the entropy residual, 

௛ܦ ൌ
1
ݐ∆2

ሺ3ܧ௛
௡ െ ௛ܧ4

௡ିଵ ൅ ௛ܧ
௡ିଶሻ ൅ ௛ݑᇱሺࢌ

௡ሻ. ௛ܧ׏
௡ (29)

In the above equation,	∆ݐ is the time step size which is assumed to be constant, ܧ௛
௡ ൌ

௛ݑሺܧ
௡ሻ	and	ܧ௛

௡ିଵ ൌ ௛ݑሺܧ
௡ିଵሻ	.	 The residual is evaluated explicitly using second-order backward 

difference for evaluating time derivative. Having evaluated the entropy residual, we can evaluate 
viscosities ߥா	and	ߥ௠௔௫ and eventually ߥ௛ which all are dependent also on the tunable 
coefficients	ܥா	and ܥ௠௔௫. The values of ܥா	and ܥ௠௔௫ are tuned by starting from a large value for 
௛ߥ .so that only the first order viscosity is active, i.e	ாܥ ൌ  ௠௔௫. Then we reduce the value ofߥ
 .௠௔௫ until the method is on the edge of loosing stability or smoothnessܥ

Algorithm in One Space Dimension 

Summarizing what have been described so far about staggered-grid, multidomain spectral 
method, element-level filtering and entropy viscosity methods and combining them we arrive at 
the following algorithm for approximating the scalar problem in Equation (1) in one space 
dimension with explicit filtering and entropy viscosity:  

Algorithm for Staggered-grid, Scalar, 1D 

1. Use	solution	at	Gauss	points	to	construct	solutions	at	the	Lobatto	points		
ܷ௄ ൌ ேܫ

௄ ഥܷ௄ሺܫே
௄ሻ௜,௝ ൌ ௝݄ାଵ/ଶ

௄ ሺݔ௜ሻ	
2. Compute	the	advective	flux:	

a. Compute	the	flux	values	at	the	internal	point	at	Lobatto	grid	
௝ܨ
஺,௄=݂௔ሺ ௝ܷ

௄ሻ	
b. 	Apply	boundary	conditions		

଴ܨ
஺,଴=݂௔ሺ݃௅ሻ	

଴ܨ
஺,௄=݂௔ሺ݃ோሻ	

c. Apply	interface	conditions	
 If	the	wave	is	right	running	characteristics	
ேܨ
஺,௄ିଵ=ܨ଴

஺,௄	
 	If	the	wave	is	left	running	characteristics	
଴ܨ
஺,௄ ൌ ேܨ

஺,௄ିଵ	
3. Compute	entropy	viscosity	diffusive	flux:	

a. Average	solution	at	the	interfaces	
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ܷ଴
௞=ܷே

௞ିଵ ൌ ଵ

ଶ
(ܷ଴

௞ ൅ ܷே
௞ିଵ)	

b. Construct	entropy	on	Lobatto	points		

௜ܧ
௞ ൌ

1
2
ሺ ௜ܷ

௞ሻଶ	

c. Calculate	average	entropy	over	the	domain	

തܧ ൌ
1
ܭ
෍෍

݄
௜ାଵଶ

2
ሺ

௜௄

௛ܧ
௡ሺݔ௜ሻሻ ൅ ௛ܧ

௡ሺݔ௜ሻሻሻ/෍݄
௜ାଵଶ

௜

	

d. Calculate	maximum	local	entropy		
maxܧ ൌ max	ሺܧ௜

௞ሻ, ݅ ൌ 1… .ܰ, ݇ ൌ 1… . . 	ܭ
e. Construct	entropy	time	derivative	on	Lobbato	points		

ሻݔሺܧ∆ ൌ
1
ݐ∆2

ሺ3ܧ௛
௡ሺݔሻ െ ௛ܧ4

௡ିଵሺݔሻ ൅ ௛ܧ
௡ିଶሺݔሻሻ	

f. Construct	entropy	residual	on	Lobatto	points		

௛ܦ
௞ሺݔ௜ሻ ൌ max

ۉ

ۈ
ۈ
ۈ
ቮۇ
௜ሻݔሺܧ∆
ݐ∆2

൅
݂ᇱ ቀݑ௛

௡ሺݔ௜ାଵሻ െ ݂ᇱ൫ݑ௛
௡ሺݔ௜ሻ൯ቁ

݄
௜ାଵଶ

ቮ

௞

		 ,

ቮ
௜ାଵሻݔሺܧ∆
ݐ∆2

൅
݂ᇱ ቀݑ௛

௡ሺݔ௜ାଵሻ െ ݂ᇱ൫ݑ௛
௡ሺݔ௜ሻ൯ቁ

݄௜ାଵ/ଶ
ቮ

௞

ی

ۋ
ۋ
ۋ
ۊ

	

where, ൬݄
௜ାଵଶ
൰
௄

ൌ ௜ାଵݔ| െ 	௜|௄ݔ

g. Calculate	entropy	viscosity		

௛ߥ
௞ሺݔ௜ሻ ൌ max ቆܥ௠௔௫݄௜ାଵଶ

, ா݄௜ାଵଶܥ
ଶ ௛ܦ

௞ሺݔ௜ሻ/maxܧ ቇ	

h. Differentiate	and	compute	diffusive	flux	at	Gauss	points	
തா௏,௄ܨ ൌ ௛ߥ

௞Dܷ௞ሺ۲ሻ௜,௝ ൌ ௝݈
ᇱሺ̅ݔ௜ାଵ/ଶሻ	

i. Average	flux	values	at	the	interfaces		
଴ܨ
ா௏,௄=ܨே

ா௏,௞ିଵ ൌ ଵ

ଶ
଴ܨ)

ா௏,௄ ൅ ேܨ
ா௏,௞ିଵ)	

4. Combine	fluxes	to	get	the	total	flux		
௝ܨ
௄ ൌ ௝ܨ

஺,௞ ൅ ௝ܨ
ா௏,௞݆ ൌ 0,1,… ,ܰ; 				݇ ൌ 1,2, … . 	ܭ

	
5. Differentiate	flux	and	evaluate	the	solution	on	Gauss	grid	using	RK3		

ௗ

ௗ௧
ഥܷ
௝ାଵ/ଶ
௞ ൅ ሺܨܦ௞ሻ௝ାଵ/ଶ=0							j=0,1,…,N‐1		;	݇ ൌ 1,2, … . 	ܭ

6. Filter	the	solution		
a. Construct	interpolation	and	projection	matrices	

Iij
int= ෑ

xi‐xkഥ
xjഥ‐xkഥ

,						i=0,…,N,							j=0…, ௙ܰ௜௟௧

N

k=0,k≠j

	

Ief
pro ൌ ෑ

xeഥ െ xk
xf‐xk

,					f=0,…,N,				e=0,…, ௙ܰ௜௟௧,						

M

k=0,k≠f
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b. Interpolate	solution	from	Gauss	to	Lobatto	Points	
ܷ௄ ൌ ேܫ

௄ ഥܷ௄ሺܫே
௄ሻ௜,௝ ൌ ௝݄ାଵ/ଶ

௄ ሺݔ௜ሻ	
c. Interpolate	from	Lobbato	points	(N)	to	lower	polynomial	space	(Nfilt)	

௜ܷ௡௧
௞ =IintU௞ 	

d. Project	back	to	higher	polynomial	space		
ܷ௣௥௢௝
௞ =IproU௜௡௧

௞ 	
e. Interpolate	from	Lobbato	to	Gauss	points		

௙ܷ௜௟௧
௞ ൌ ௅ܫ

௄ܷ௣௥௢௝
௞ ሺܫ௅

௄ሻ௜,௝ ൌ ௝݈
௄ሺݔ௜ሻ	

3.2 Implementation of the EV Method for 2D Euler Equations 

As the second step, we have implemented the EV method in the two-dimensional, inviscid Euler 
solver. Specific accomplishments include: 

1. Development and testing of element level, explicit low-pass filtering routines in 2D 
DSEM code for Euler equations. 

2. Development of a consistent and compatible numerical formulation of the EV method for 
2D DSEM. 

3. Programming and testing of 2D EV subroutines and modules and integration of the 2D 
routines into the 2D DSEM inviscid Euler solver. 

4. Preliminary testing of the 2D code against simple benchmarks for supersonic flows with 
shocks.  

3.2.1 Mathematical Modeling 

To set the stage for the discussion on the implementation of the EV method for the DSEM based 
Euler solver, we first provide the conservation laws in 2D and discuss filtering methods that may 
be used in combination with the EV method. 

Governing Equations 

Since the EV method is based on viscous terms that have the same form as the physical viscous 
stress terms, we consider the governing Navier-Stokes equations (with viscous fluxes). The non-
dimensional equations for conservation of mass, momentum and energy in 2D Cartesian 
coordinates are given by 

QሬሬԦ୲ ൅ FሬԦ୶ୟ ൅ GሬሬԦ୷ୟ ൌ
1
Re୤

൫F୶୴ ൅ G୷୴൯ (30)

where, 

QሬሬԦ ൌ ቎

ρ
ρu
ρv
ρe
቏ , FሬԦ௫ୟ ൌ ൦

ρ
p ൅ ρuଶ
ρuv

uሺp ൅ ρeሻ

൪,						GሬሬԦ௬ୟ ൌ ൦

ρv
ρuv

p ൅ ρvଶ

vሺp ൅ ρeሻ

൪ 

The viscous fluxes take the following form 
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FሬԦ୶୴ ൌ

ۏ
ێ
ێ
ێ
ۍ

0
τଵଵ
τଵଶ

uτଵଵ ൅ vτଵଶ ൅
1

ሺγ െ 1ሻM୤
ଶPr

T୶ے
ۑ
ۑ
ۑ
ې

,			GሬሬԦ୷୴ ൌ

ۏ
ێ
ێ
ێ
ۍ

0
τଶଵ
τଶଶ

uτଶଵ ൅ vτଶଶ ൅
1

ሺγ െ 1ሻM୤
ଶPr

T୷ے
ۑ
ۑ
ۑ
ې

 (31)

 

where 

τଵଵ ൌ 2ൣu୶ െ ൫u୶ ൅ v୷൯/2൧,							τଶଶ ൌ 2ൣv୷ െ ൫u୶ ൅ v୷൯/2൧,   τଵଵ ൌ τଶଵ ൌ ሺv୶ߤ ൅ u୷ሻ 

are the viscous stresses with μ and ߢ	denoting non-dimensional temperature-dependent viscosity 
and conductivity coefficients, respectively. In the EV method, the physical viscosity, μ, is 
replaced by an artificial viscosity that damps the numerical Gibbs oscillations induced by the 
high-order polynomial approximation near the discontinuities. 

The energy flux is given by 

ρe ൌ
P

γ െ 1
൅ ρሺuଶ ൅ vଶሻ/2 (32)

In the non-dimensional form of the Navier-Stokes equations the non-dimensional Reynolds 
number, Prandtl number and Mach number appear as 

ܴ ௙݁ ൌ ௙ܷ
௙ܮ∗
௙ߩ∗

ݎܲ				;∗ߤ/∗ ൌ
௖೛∗ఓ∗

௞∗
; ௙ܯ				 ൌ

௎೑
∗

ටఊ ೑்
∗ோ∗

 

where * denotes the dimensional variables. To close the set of governing equations, the ideal gas 
equation of state in non-dimensional form is given by  

ܲ ൌ
ܶߩ
M୤ߛ

ଶ (33)

Element Level Filtering 

Element level filtering can be used to stabilize spectral simulations of shocked flows. Filtering 
may be employed in combination with EV. We are considering the weak filter developed by 
Blackburn and Schmidt [3], since it has an excellent compatibility with our nodal DSEM 
formulation. This filter projects the higher-order solution approximation to a lower-order 
interpolant, and removes the high frequency content of the high-order interpolant. Consequently, 
the lower-order intepolant is projected back to the original nodes of the higher-order interpolant. 
Introducing	I୒

୑ as the operatorthat interpolates a polynomial of order N with Np = N + 1 nodes 
onto a set of Mp = M + 1 nodal points, the projection is summarized as	F ൌ I୑

୒I୒
୑, with 

ேೕೖܫ
ெ ൌ

൛∏ ൫ݔ௝ െ ௣൯ேݔ
௣ୀ଴ ൟ

∏ ൫ݔ௞ െ ௤൯ேݔ
௤ୀ଴

൘ , ݆ ൌ 0,… ܯ, ݇ ൌ 0,… ,ܰ (34)
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where the x values are the coordinate for Gauss-Lobatto-Lobatto (gll) nodes. Figure 2 shows a 
schematic of the two-stage projection. 

 

Figure 2: Element-Level Filtering Through a Two-stage Projection 
 Courtesy of [3] 

Since the grids in 2D are orthogonal the filtering may be performed along 1D lines in both 
directions. Effectively, the filtering is reduced to a matrix-vector multiplication as follows	

(35) ܂ഥ=Fu۴ܝ

Where F is a one-dimensional filter/projection matrix.  

Entropy Viscosity Method for Euler Equations in 2D 

In the EV method an artificial entropy viscosity replaces the physical viscosity and the thermal 
conductivity as 

݇௛ ൌ
ݎܲ
ߛ െ 1

߭௛																		௛,ߤ ൌ
௛ߤ
௛ߩ

 

The entropy viscosity has the same dissipative effect on flows as the viscous stresses in the 
Navier-Stokes equations. The entropy viscosity dissipates the unphysical numerical Gibbs 
oscillations (energy) in higher-order approximations of the solution generated by shock 
discontinuities.  While it is desired to damp the numerical oscillations, physical small-scale 
features should not be affected by the artificial damping. To ensure that only high-frequency, 
numerical oscillations are dissipated by the entropy viscosity, but not the small-scale flow 
features in smooth flow regions, the entropy viscosity is scaled by the entropy generation in the 
flow. Shocks generate significant entropy and hence the entropy viscosity is large in the vicinity 
of shocks, while in smooth flows the entropy generation and thus the entropy viscosity are 
significantly lower.  

The entropy in an ideal gas flow is determined as [4] 

ܵሺ݌, ሻߩ ൌ ఘ

ሺఊିଵሻ
݌൫݃݋݈ ൗߛߩ ൯  (36)

The entropy generation and entropy residual are determined as follows: 

,௛ሺ࢞ܦ ሻݐ ൌ
߲
ݐ߲
ܵ௛ሺ࢞, ሻݐ ൅ .׏ ൫࢛௛ሺ࢞, ,ሻܵ௛ሺ࢞ݐ ሻ൯ (37)ݐ
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ܴ൫ܦ௛ሺ࢞, ሻ൯ݐ ൌ ,௛ሺ࢞ܦ| ሻ| (38)ݐ

The entropy viscosity is scaled with the entropy residual as follows: 

,ாሺ࢞ߤ ሻݐ ൌ ,௛ሺ࢞ߩாܥ ሻ݄ሺ࢞ሻଶݐ ,௛ሺ࢞ܦ| ሻ|  (39)ݐ

where	ߤா is the dynamic viscosity. In the EV method, we define another similar entropy 
generation term yielding, 

௛,ଵܦ ൌ
߲
ݐ߲
ܵ௛ ൅ .׏ ሺ࢛௛ܵ௛ሻ 

௛,ଶܦ ൌ ௛ߩ
ିଵܵ௛ ൭

߲
ݐ߲
௛ߩ ൅ .׏ ሺ࢛௛ߩ௛ሻ൱ 

(43)

 

(40)

where we define the value of entropy residual as 

௛ܦ ൌ ,௛,ଵܦ൫ݔܽ݉  ௛,ଶ൯ܦ

The second entropy residual ܦ௛,ଶ essentially accounts for inaccuracies in mass conservation. 
Again, similarly to 1D entropy viscosity method, the maximum dynamic viscosity, ߤ௠௔௫, is 
evaluated as 

௠௔௫|௄ߤ ൌ |௛ݑ|௛‖௄݄௄ฮߩ‖௠௔௫ܥ ൅ ඥߛ ௛ܶฮ௄  (41)

Finally, we set 

௛ߤ ൌ ݉݅݊ሺߤ௠௔௫, ாሻ  (42)ߤ

3.2.2 Numerical Methodology 

The above formulation has been implemented in our collocation DSEM approach and is 
summarized as follows: 

Algorithm for Staggered-grid, Euler Equations in 2D 

1. At	Gauss	points	 the	entropy	 function,	 S,	 is	determined	based	on	 the	 functional	
relation	in	Equation	(36).	

2. The	entropy	residual	ܦ௛,ଵ	is	determined	as	follows:	
a. The	 physical	 values	 of	 the	 solution	 from	 Gauss‐Gauss	 (gg)	 points	 are	

interpolated	 to	 Lobatto‐Gauss	 (lg)	 points	 along	 the	 lines	 in	 both	 grid	
directions	using	projection	matrices		

ܳ௟௚ ൬ ௜ܺ, ௝ܻାଵଶ
൰ ൌ ෍ ෍ܳ

௠ାଵଶ,௡ା
ଵ
ଶ

௚௚
ேିଵ

௡ୀ଴

ேିଵ

௠ୀ଴

݄
௠ାଵଶ

ሺ ௜ܺሻ݄௡ାଵଶ
൬

௝ܻାଵଶ
൰	

ܳ௟௚ ൬ ௜ܺ, ௝ܻାଵଶ
൰ ൌ 	 ෍ ܳ

௠ାଵଶ,௡ା
ଵ
ଶ

௚௚
ேିଵ

௠ୀ଴

݄
௠ାଵଶ

ሺ ௜ܺሻ	
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ܳ௟௚ ൬ ௜ܺ, ௝ܻାଵଶ
൰ ൌ 	 ෍ ۷ ൬݅,݉ ൅

1
2
൰ܳ

௠ାଵଶ,௡ା
ଵ
ଶ

௚௚
ேିଵ

௠ୀ଴

	

݄
௡ାభ

మ
	is	the	Lagrange	interpolating	polynomial	on	the	Gauss	grid.		

The	values	of	the	interpolation	matrix	are	calculated	in	a	pre‐processing	
step	and	stored	in	۷.		
Similarly	in	y	direction	

ܳ௚௟൫ ௜ܺାଵ/ଶ, ௝ܻ൯ ൌ 	෍ ۷ ൬݅, ݊ ൅
1
2
൰ܳ

௠ାଵଶ,௡ା
ଵ
ଶ

௚௚
ேିଵ

௡ୀ଴

	

b. The	 entropy	 flux	 values	ሺ࢛௛ܵ௛ሻ	are	 computed	 at	 lg	 points	 from	 the	
interpolants,	Q,	and	the	functional	relations	
	௫ௌ=uܵ௛ܨ
	௬ௌ=vܵ௛ܨ

c. A	Patching	process	is	applied	to	the	entropy	fluxes	so	that	we	make	sure	
the	 entropy	 fluxes	 maintain	 the	 C0	 continuity	 over	 boundaries	 and	
interfaces.		

d. The	 entropy	 fluxes	 are	 differentiated	 in	 X	 and	 Y	 directions	 to	 form	 the	
divergence	of	the	entropy	flux	׏. ሺ࢛௛ܵ௛ሻ	
డி೗

డ௑
ൌ ∑ ௟௚ேିଵܨ

௜ୀ଴ ൬ ௜ܺ, ௝ܻାభ
మ
൰
డ௟೔ሺ௑೔శభ/మሻ

డ௑
=∑ ۲ሺ݆, ݅ሻܨ௟௚ேିଵ

௜ୀ଴ ൬ ௜ܺ, ௝ܻାభ
మ
൰	

డி೗

డ௒
ൌ ∑ ௚௟ேିଵܨ

௜ୀ଴ ൫ ௜ܺାଵ/ଶ, ௝ܻ൯
డ௟ೕሺ௒ೕశభ/మሻ

డ௒
=∑ ۲ሺ݅, ݆ሻܨ௟௚ேିଵ

௜ୀ଴ ൬ ௜ܺ, ௝ܻାభ
మ
൰	

݈௜	is	the	Lagrangian	interpolant.	The	derivative	comes	down	to	a	matrix‐
vector	product	۲ ∗ ۴	with	D	a	differentiation	projection	matrix.	

e. The	 time	 derivative	 is	 discretized	 using	 a	 third	 order	 backward	
differencing	method.	

3. The	 second	 entropy	 residual	ܦ௛,ଶ	is	 determined	 in	 a	 same	manner	 as	ܦ௛,ଵ	and	
find	ܦ௛	

4. The	entropy	residual	from	Gauss	points	is	interpolated	to	Gauss‐Lobatto	points	
to	determine	the	viscous	flux	terms.	

Interface and Boundary Treatment 

Interpolation of the solution leads to different solution values at the sub-domain interface points, 
one from each of the contributing sub-domains. By enforcing continuity of the advective, 
entropy and viscous fluxes over the interface, the elements are connected. Moreover, flux 
continuity yields a conservative method. The inviscid fluxes are computed using an approximate 
Riemann solver. Given the two solution states ۿே

௞ିଵ and ۿ଴
௞, the flux in each spatial direction can 

be expressed as [7]: 

∁௔൫ۿே
௞ିଵ, ଴ۿ

௞൯ ൌ
1
2
ൣ۴௔൫ۿே

௞ିଵ൯ ൅ ۴௔൫ۿ଴
௞൯൧ െ

1
2
଴ۿ૚൫ି܀ߣ܀

௞ െ ேۿ
௞ିଵ൯ (43)

where	۴௔ is the vector of advective fluxes and	܀	is the matrix of the right eigenvectors of the 
Jacobian of  ۴௔ computed using Roe-average of ۿே

௞ିଵ and ۿ଴
௞. At the boundaries, the physical 
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boundary can be viewed as an interface between the external state and the computational domain 
and the Riemann solver is applied between external specified and the internal solution values. A 
similar approach is followed for entropy fluxes. We used a Lax-Friedrichs flux  

Γୣ൫ۿே
௞ିଵ, ଴ۿ

௞൯ ൌ
1
2
ൣ۴௘൫ۿே

௞ିଵ൯ ൅ ۴௘൫ۿ଴
௞൯൧ െ

1
2
A ቀS൫ۿ଴

௞൯ െ S൫ۿே
௞ିଵ൯ቁ (44)

to establish continuity of the entropy fluxes over interfaces, since it decouples the entropy 
approximation entirely from the flow solver. Moreover, it is more dissipative than the Roe 
solver, which improves the stability of the EV method. 

3.3 FMDF Model Development for LES of High-Speed Turbulent Flows 

This part of the report describes our efforts on the development and testing of hybrid LES/FMDF 
methodology for numerical simulation of hydrogen-air combustion in high speed turbulent flows. 
As we mentioned earlier, in Phase I a compact FD code was used to test the FMDF method. To 
obtain the turbulent gas dynamic field, the filtered compressible LES equations are solved with 
high order Eulerian FD methods. The hydrogen-air mixing and combustion are implemented by 
solving the FMDF equations via stochastic differential equations and a Lagrangian Monte Carlo 
(MC) particle method. In the first part of this work, different sets of hydrogen-air reaction 
models, including a 4-step reduced mechanism, two 14- and 16-step skeletal mechanisms, and a 
37-step detailed mechanism are successfully implemented. Different methods for calculating the 
thermophysical properties of the individual species and the mixture are also investigated. The 
most efficient and accurate methods are chosen for the multi-species calculations of scalar and 
heat transport and reaction in the LES/FMDF code with various kinetics models. The results of 
the reacting and non-reacting compressible turbulent mixing layers are discussed in Section 4. 
The hybrid LES-FD/FMDF-MC method is employed for the simulations of subsonic and 
supersonic reacting and non-reacting mixing layers. In this report, we first present basics of 
hydrogen-reaction models to be used in the LES/FMDF. We will then describe the 
implementation of these reaction models into LES/FMDF code and the results obtained by this 
code for nonreacting and reacting subsonic and supersonic mixing layers are presented.  

In the hybrid LES/FMDF methodology, two sets of Eulerian and Lagrangian equations are 
solved together for velocity, pressure and scalar (temperature and mass fraction) fields. These 
equations are presented and discussed in the following subsections. 

3.3.1 Filtered Navier-Stokes Equations 

The filtered Navier-Stokes equations including continuity, momentum and energy are expressed 
as follows:  

 (45) 

 (46) 


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 (47) 

where total energy et, filtered viscous stress tensor and heat conduction vector are defined as,  

 (48) 

 
(49) 

The sub-grid scale (SGS) stress tensor and heat flux vector τ and Q are defined respectively as,  

 (50) 

 (51) 

In order to close the governing equations, Smagorinsky and gradient-diffusion models are 
implemented. Therefore, the modeled SGS stress tensor and heat flux, τ and Q, respectively, are 
written in the following forms: 

 (52) 

 (53) 

where eddy viscosity is defined as,  

 (54) 

3.3.2 Compressible Scalar FMDF Equations 

The scalar FMDF represents the joint PDF of the scalar vector at the subgrid-level and is defined 
as 
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 (55) 

 (56) 

where G denotes the filter function, is the scalar vector in the sample space, and is the 

“fine-grained” density [15]. The scalar vector  includes the species mass 

fractions and the specific enthalpy. The scalar FMDF transport equation is obtained from the 
transport equation for the unfiltered scalar [16]: 

 (57) 

Here, for simplicity, we consider the scalar equation in the Cartesian coordinate system. For the 

species mass fraction , the source/sink term in Eq. (57) represents the 

production or consumption of species α due to the chemical reaction. For the energy or enthalpy

, the source term represents the heat of combustion, and the term 

 is due to compressibility and viscous energy dissipation. The 

FMDF transport equation is obtained by inserting the instantaneous unfiltered scalar equation 

into the time derivative of fine-grained density  and, filtering that, 

 (58) 

where, 
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Equation (58) is an exact transport equation for the scalar FMDF in compressible flows. In this 
equation, the Lewis number is assumed to be unity, so the mass and thermal diffusion 

coefficients will be similarly obtained from the viscosity as . The FMDF equation 
cannot be solved directly due to the presence of three unclosed terms. Following the suggested 
models for these unclosed terms [16-21], the closed form of FMDF transport equation for a 
compressible reacting system is achieved, 

 (60) 

where, 

(61) 

where is the turbulent diffusivity and Prt is the turbulent Prandtl number 

(turbulent Prandtl and Schmidt numbers are the same). The SGS mixing frequency is 

evaluated using the following relation: 

 (62) 

Using Equation (60), the equation for the first SGS moment is derived in the following 

form: 

 (63) 

This equation can also be obtained directly by filtering Equation (57), using a standard gradient 
model for the subgrid flux terms and neglecting the SGS viscous and pressure terms. 
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3.3.3 Hydrogen-Air Reaction and Thermophysical Properties 

Basic Definitions 

Multi-step reactions are usually defined by the following equations: 

 (64) 

where Mi is the chemical symbol for the ith species and νi,l denotes the molar concentration 
coefficient of the ith species in reaction l. The forward and backward rate constants kf  and kb can 
be calculated using the Arrhenius law, as follows: 

 (65) 

The rate of a reaction depends on the rate constants and the concentrations of species involving 
in the reaction.  

 (66) 

The net rate of change of concentration of a species in the whole reaction set is calculated from 
the following relation: 

 (67) 

The concentration and mass fraction of the ith species are related through the following equation: 

 
(68) 

Subscript “mix” stands for the mixture.  

Reaction Mechanisms 

There are many reaction mechanisms for the hydrogen-air combustion. Four of these 
mechanisms are considered in the present study. These mechanisms are presented in Tables 1 
through 4.  The 37-step detailed [8] and the 16-step skeletal [9] mechanisms solve for nine 
species, while the 14-step skeletal [10] and the 4-step reduced [9] mechanisms include 
contributions of eight and seven species, respectively. The species H2O2 is assumed to be in 
steady state condition in the last two mechanisms. In the 4-step reduced mechanism, the steady-
state assumption is made for HO2 as well. In some reactions a third body, M, participates in the 
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reaction. The third body is needed to carry away the extra energy and remains unchanged on 
both reactant and product sides of the reaction. In all reactions, M has a fixed efficiency given 
by,  

M = 1.0 H2 + 6.5 H2O + 0.4 O2 +0.4 N2 + 1.0 O + 1.0 H + 1.0 OH + 1.0 HO2 + 1.0 H2O2    (69) 

It must be noted that the only effect of variation in the efficiencies of the third body is changing 
the ignition delay.   

 

 

Table 1: The 37-Step Detailed Mechanism 

# Reaction # Reaction # Reaction 

1 O2 + H → OH + O 14 O2 + M → 2 O + M 27 HO2 + HO2 → H2O2 + O2 

2 OH + O → O2 + H 15 H + O2 + M → HO2 + M 28 2 OH + M → H2O2 + M 

3 H2 + O → OH + H 16 HO2 + M → H + O2 + M 29 H2O2 + M → 2 OH + M 

4 OH + H → H2 + O 17 HO2 + H → OH + OH 30 H2O2 + H → H2 + HO2 

5 H2 + OH → H2O + H 18 OH + OH → HO2 + H 31 H2 + HO2 → H2O2 + H 

6 H2O + H → H2 + OH 19 HO2 + H → H2 + O2 32 H2O2 + H → H2O + OH 

7 OH + OH → H2O + O 20 H2 + O2 → HO2 + H 33 H2O + OH → H2O2 + H 

8 H2O + O → OH + OH 21 HO2 + H → H2O + O 34 H2O2 + O → OH + HO2 

9 2 H + M → H2 + M 22 H2O + O → HO2 + H 35 OH + HO2 → H2O2 + O 

10 H2 + M → 2 H + M 23 HO2 + O → OH + O2 36 H2O2 + OH → H2O + HO2 

11 H + OH + M → H2O + M 24 OH + O2 → HO2 + O 37 H2O + HO2 → H2O2 + OH 

12 H2O + M → H + OH + M 25 HO2 + OH → H2O + O2 

 
13 2 O + M → O2 + M 26 H2O + O2 → HO2 + OH 

 

 

 

 

 

 



 

 
Approved for public release; distribution unlimited. 

22

Table 2: The 16-Step Skeletal Mechanism 

# Reaction # Reaction # Reaction 

1 H + O2 → O + OH 7 H + H + M → H2 + M 13 HO2 + H → OH + OH 

2 O + OH → H + O2 8 H + O + M → OH + M 14 HO2 + HO2 → H2O2 + O2 

3 O + H2 → H + OH 9 H + OH + M → H2O + M 15 H2O2 + M → OH + OH + M 

4 H + OH → O + H2 10 H + O2 + M → HO2 + M 16 HO2 + H2 → H2O2 + H 

5 OH + H2 → H + H2O 11 HO2 + H → H2 + O2 
 

6 H + H2O → OH + H2 12 H2 + O2 → HO2 + H 

 

Table 3: The 14-Step Skeletal Mechanism 

# Reaction # Reaction # Reaction 

1 HO2 + H → H2 + O2 6 H2 + OH → H2O + H 11 H + OH + M → H2O + M 

2 OH + O → O2 + H 7 H2O + H → H2 + OH 12 H + O2 + M → HO2 + M 

3 O2 + H → OH + O 8 OH + OH → H2O + O 13 HO2 + OH → H2O + O2 

4 H2 + O → OH + H 9 H2O + O → OH + OH 14 H2 + O2 → HO2 + H 

5 OH + H → H2 + O 10 HO2 + H → OH + OH  

 

Table 4: The 4-Step Reduced Mechanism 

# Reaction # Reaction 

1 H2 ↔ H + H 3 H2 + OH ↔ H2O + H 

2 H + O2 ↔ O + OH 4 OH + OH ↔ H2 + O2 

 

Thermodynamic and Transport Properties 

In this work, the constant-pressure heat capacity (Cp) of the ith species is evaluated using the 
NASA polynomial in the following form: 

 (70) 2 3 4
1, 2, 3, 4, 5,

i
i i i i i

Cp
a a T a T a T a T

R
    





 

 
Approved for public release; distribution unlimited. 

23

This method is also used in GRI_Mech and CHEMKIN-II codes. The produced data from the 
above formula are read from an input in the main code. By keeping the temperature intervals 
constant, there will be a one-to-one correspondence of temperature and the value of Cp for each 
component. This method is very efficient and reduces the run time. 

When the Cp of each species is calculated, the mixture Cp can be obtained as follows: 

 (71) 

There are three different methods for calculating the molecular viscosity and thermal 
conductivity of the species. In the first method, one can calculate the viscosity and conductivity 
of the ith species using the following formulas proposed by NASA [11]: 

 (72) 

 
(73) 

The second method proposes two theoretical relations based on the gas kinetic theory to calculate 
the viscosity and conductivity of the species [9]. 

 (74) 

 (75) 

In these relations, Ω(2,2) is the collision integral and depends on the nondimensional temperature 
T* and parameter δ*. In addition, k°, σi, and mi are Boltzmann constant (=1.3806×10-23 J/K), 
Lennard-Jonnes collision diameter and mass of the ith species within the mixture.  

In the third method, one can fit polynomials to the data of CHEMKIN to obtain the following 
relations to calculate viscosity and thermal conductivity of the ith individual component: 

 (76) 

 (77) 

Where, Npol is the order of the polynomial. 
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The other important transport property is the binary diffusion coefficient between species i and j 
which is given by the following theoretical relation in the standard units:  

 (78) 

where Ω(1,1) is the collision integral, p is the pressure (in terms of atmosphere), and σij is the 
effective Lennard-Jones collision diameter. Since Dij is only a function of temperature and 
pressure, we can fit polynomials to the (Dij . p) and then use them in the main code. This will 
result in a significant reduction of computational cost without loss of accuracy. A third-order 
polynomial in the following format is found to be quite satisfactory: 

 (79) 

There are different ways of calculating the transport properties of the mixture from the properties 
of the individual components. The exact theoretical approach yields the following relations to 
calculate mixture viscosity and conductivity [9]: 

 
(80) 

 
(81) 

where Фi,j is defined as,  

 (82) 

Since there are two exterior and interior summations in these relations, their computational costs 
are relatively high. Thus, we look for a suitable approximate approach that leads to reasonable 
results and is computationally cheaper at the same time. Three different approximations are 
separately listed below for the mixture viscosity and conductivity.  

First approximation for μmix (proposed by Wilke [12] and modified by Bird, et al. [13]): 

 
(83) 
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Second approximation for μmix: 

 (84) 

Third approximation for μmix: 

 (85) 

Similarly, we have the following approximations for the mixture conductivity: 

First approximation for λmix (proposed by Mathur, et al. [14]): 

 (86) 

Second Approximation for λmix: 

 (87) 

Third Approximation for λmix: 

 (88) 

3.4 Implementation of FMDF in the DSEM Code 

This section is dedicated to the implementation of the FMDF method in the two-dimensional 
DSEM code. Previously, the DSEM code contained routines for tracking inertial (heavy) 
particles; however, to be compatible with the FMDF method, it is necessary to modify these 
existing routines and add new routines to account for additional terms and equations. The plan 
for implementation is as follows: 

 Modeling of Monte Carlo particles 
 Validation of particle routines 
 Development of FMDF routines compatible with DSEM code 
 Calculation of Eulerian field from tracked particles 
 Consistency test comparing DSEM results to FMDF results 
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3.4.1 Mathematical Modeling 

In order to explain the implementation of the particle tracking and FMDF algorithms, we first 
present the necessary stochastic differential equations. For a detailed explanation of how particle 
tracking is implemented in the DSEM code we refer to [23]. For details of the derivation of the 
FMDF equations we refer to [17]. 

Equation of Motion for a Particle without Inertia 

The Lagrangian procedure used to implement the tracking of particles in the DSEM code is a 
modification of the method described by [23]. Considering that the FMDF method is concerned 
with particles with no inertia, the governing equations of motion for our particles are simplified 
to a single equation for particle position 

௣ࢄ݀
ݐ݀

ൌ ࢜௙ ൅  ௜ (89)ࡰ

where ࢄ௣ is the position of the particle in space, ࢜௙ is the velocity of the carrier phase at the 
particle location, and ࡰ௜ accounts for the diffusion process. Such particles do not have any mass 
and therefore should behave as fluid particles of the carrier phase rather than inertial particles 
entrained in the flow. It should be noted, however, that particles with mass and inertia behave 
differently, for this purpose a differential comparison is performed to ensure that the particles we 
are modeling behave as expected. The complete set of Lagrangian equations for inertial particles 
are found in [23]. 

Additional Stochastic Differential Equations 

In FMDF, the compositional values of the particles are changed due to their mixing and reaction 
within the flow. For any given scalar ߶	the subgrid scale reaction may be described as  

݀߶ఈ
ݐ݀

ൌ ܵథ (90) 

whereas the subgrid scale mixing is 

݀߶ఈ
ݐ݀

ൌ െΩ௠ሺ߶ఈ െ 〈߶ఈ〉ሻ (91) 

where ߶ఈ=߶ఈ൫ࢄ௣ሺݐሻ,  ሻ, inݐ௣ሺࢄ ,൯ is a scalar attributed to the particle at the particle locationݐ
space, and < > shows the ensemble average. In addition, the term ܵథ describes the reaction 
source, and Ω௠is a modeled term relating to the frequency of mixing at the subgrid level. 

3.4.2 Numerical Implementation 

To successfully implement the FMDF method into the DSEM code, it is first necessary to 
develop a particle-tracking algorithm suitable to the DSEM method. The algorithm must contain 
the following steps: 

 Seed particles by initializing their position and velocity 
 Use search algorithm to locate particles within elements 



 

 
Approved for public release; distribution unlimited. 

27

 Map particles from Chebyshev grid to an equidistant grid 
 Find carrier phase properties at particle location using interpolation scheme 
 Integrate particle equations in time 
 Establish ensemble domains around Eulerian grid points 
 Take statistics from ensemble domains 
 Calculate Eulerian fields based on Lagrangian fields 

In this section, we briefly present the necessary work performed to implement the 
aforementioned steps into the DSEM code. 

Search Algorithm 

Considering the algorithm in use tracks each particle individually in a Lagrangian manner, it is 
necessary to locate individual particles within our elements. Locating the particles is 
accomplished by scanning the entire computational domain. For the case of subdomains with 
rectangular shapes, such as in the shear flow case presented below; it is possible to take 
advantage of an orthogonal grid in mapped space to reduce computational cost. Once the particle 
location is determined in mapped space on the Chebyshev grid, it must then be mapped to an 
equidistant grid where the particle equations shall be integrated in physical space. 

Interpolation Scheme 

The DSEM method provides solution values at Gauss-Gauss points. However, it becomes 
instantly evident that the particles, which we are tracking, do not lie upon these points. It is 
therefore necessary to evaluate the properties of the carrier phase at the particle location in space. 
Although there are several methods available to perform such operations, the Lagrangian 
interpolation scheme of order six is selected due to its low cost and high accuracy. [23] 

The sixth order Lagrangian interpolation scheme uses values taken from three grid points on 
either side of the particle location in mapped space to calculate a polynomial. A value at the 
particle location is then calculated from the resulting sixth-order polynomial. If the particle is 
located near the boundary of the element, we still use all the interpolation points from the same 
element. We have shown that this does not result in a loss of accuracy due to the fact that the 
Chebyshev points are distributed more closely to each other near the element boundary. The fact 
that the interpolation scheme is based entirely on the points within the same element significantly 
reduces the cost of message passing in MPI and thus adds to the efficiency of parallelization. 

Time Stepping Scheme 

The temporal discretization of the transport equation is done using an Adams-Bashforth (AB) 
scheme.  In order to employ the AB scheme, all variables for the particle properties must be 
projected onto the physical space from the mapped space. The interpolation scheme provides us 
with the necessary information to solve the velocity at the particles location in physical space  

௫ݒ ൌ
ܳଶ
ܳଵ

 (92) 

௬ݒ ൌ
ܳଷ
ܳଵ

 (93) 
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where ࢜௙ ൌ ൫ݒ௫,  are defined in	ܳଶ	and	൯is the fluid velocity at the particle location and ܳଵ	௬ݒ
Equation (30). To find the velocity of the massless particle in the mapped space, we simply use 

࢜௣௡ ൌ ࢜௙
௡ (94) 

where n signifies the time level. Knowing the velocity, we then update the particle position as  

௣ࢄ݀
ݐ݀

ൌ ࢜௙; ௣௡ାଵࢄ			 ൌ ௣௡ࢄ ൅
1
2
ሺ3࢜௣௡ݐ∆ െ ࢜௣௡ିଵሻ (95) 

Ensemble Domain 

To solve the FMDF equations, a sampling domain is constructed from which we are able to take 
statistics. Such a domain is referred to as an “ensemble domain.” Ideally the ensemble domain 
would be infinitely small, and the number of particles within the ensemble domain would be 
infinitely large. However, computationally we are restricted to use a finite size in space and a 
finite number of particles. The challenge is to find the smallest number of particles that would 
provide ensemble-averaged quantities without a significant error.  

The solutions for DSEM and FMDF are treated in a split manner. The FMDF method only 
carries dependency on the velocity field calculated in the DSEM and the primitive variables 
assigned to the particles when they are initialized. However, due to the fundamental differences 
between the DSEM method and LES-FD method, as shown in [17], it was necessary to create an 
additional Lagrangian sub-grid on which the FMDF solutions would lie. For the purposes of this 
consistency test a uniform grid was selected as shown in Figure 4, but a nonuniform grid may be 
easily substituted if necessary. 

 
Figure 3: DSEM Grid for a Free Shear Flow 

 
Figure 4: Ensemble Grid for a Free Shear Flow 
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Initial and Boundary Conditions 

The particles are initialized, or rather seeded, consistently with respect to the initial flow field, 
meaning they carry the initial velocity, temperature, and weighting as the fluid at their location in 
mapped space. The particles should be distributed uniformly, yet randomly, within the domain of 
the carrier phase. 

In addition, should particles leave the flow field during simulation, they are replaced at the inlet 
to ensure that a consistent number of particles remain within the domain for averaging. 
Weighting becomes necessary with density variation in the carrier phase as particles may be 
sparser in such areas. To ensure proper averaging occurs, additional particles shall be added to 
areas of lower density, and shall be weighted accordingly. 

In order to reduce computational cost and memory consumption, a method of variable weighting 
is employed. Considering that in the FMDF method each particle is representative of a fluid 
element within the domain, we are able to use a system of weights that are proportional to the 
mass of the element in question. Doing so allows for a smaller number of particles to be tracked. 
Computation of the weights of the aforementioned particles is trivial and is dependent on the 
initial number of particles populating an ensemble element as well as the fluid density at that 
specific location in space. An individual particle’s mass is calculated as an initial condition as 
such: 

݉௣ ൌ
݉∆ಶ

݊௣
∆ಶ

 (96) 

where ݊௣
∆ಶ is the number of particles contained within the ensemble domain and ݉∆ಶ is the mass 

of fluid contained within the ensemble element encasing the particle in question. The mass of the 
fluid is simply found by the relation ݉∆ಶ ൌ  ௙ is the fluid density and ܸ is theߩ ௙ܸ, whereߩ
element volume. It should be emphasized that the particle mass is used for keeping track of 
density only. For the purpose of tracking the trajectories, all particles are considered massless. 

To assign initial properties we take advantage of the DSEM code’s Lagrangian interpolation 
routines to assign velocity, density, and a scalar to the particle from the Eulerian field. However, 
after the initial conditions are assigned, only the velocity continues to be interpolated onto the 
particle location. The weighting is to remain the same unless additional particles need to be 
added or particles need to be removed, and the scalar is to be solved by the FMDF stochastic 
differential equations. It can clearly be seen that the two methods, although being used together, 
are in fact providing independent solutions. 

To achieve appropriate comparison, we require that the boundary conditions imposed on both 
solvers be equal. This is done by matching the mass flow rate of fluid in the Eulerian field with 
the mass flow rate of particles entering at the inlet: 

ሶ݉ ௜௡௟௘௧ ൌ ሶ݉ ∆ಶ (97) 

which in the appropriate variables, when solved for number of particles to be seeded at a given 
time step, reduces to 
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݊௣ᇞ௧ ൌ
௙ߩ ௙ܷܣ∆ಶ∆ݐ

݉௣
 (98) 

Fluid density, ߩ௙, and fluid velocity, ௙ܷ, are taken at the location of the ensemble into which the 
particles are to be seeded. The inlet area, ܣ∆ಶ, is taken as the area (or for the case of two-
dimensions it is the length) of the ensemble element. Since the number of particles being added 
may only be an integer number, there are two available options for handling the remainder. One 
may either adjust the weighting of the particles to match the mass per time step or perform 
integer subtraction and track remainders which are carried over to future time steps. To minimize 
computational overhead from additional particles with lower weighting, integer additions with 
fixed weighting were selected. Although this causes the mass flow rates at each individual time 
step to be unequal, the time average of mass entering is equal and the method holds true. 

Calculation of Scalar Density 

Due to the fact that the particles represent discrete fluid elements in our simulations, it is 
expected that if fluid elements enter or leave a respective ensemble domain the density of 
aforementioned domain will increase or decrease. This is shown by the FMDF formulation [17] 
as: 

〈ߩ〉 ൌ ܥ ෍ ௡ܹ

௡ ∈ ∆ಶ

 (99) 

where ܥ is a proportionality constant and ௡ܹ is the weighting of particle ݊ that is within an 
element of the ensemble domain, ∆ா. It is seen that the density of an ensemble domain is in fact 
proportional to the sum of the weights of the Monte Carlo particles being tracked. The constant 
may be found a posteriori. For the case of uniform weights, this equation reduces to 〈ߩ〉 ൎ
ᇞ௠

ᇞ௏
݊௣. By using uniform weights, as density decreases in an ensemble volume the particle 

quantity shall also decrease which in turn decreases statistical accuracy. It is for this purpose that 
particle adding/removal with variable weighting is implemented in the DSEM/FMDF code.
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4.0 Results and Discussions 

4.1 Entropy Viscosity Method in 1D  

As mentioned earlier, we consider two model problems in this work to validate our code and see 
how the entropy viscosity method and explicit filtering can be effective in removing spurious 
oscillations and shocks. Linear advection and nonlinear inviscid Burgers equations are 
considered here and they are solved with different initial conditions ranging from smooth waves 
to extremely sharp waves to observe how the code handles different types of initial conditions. 

4.1.1 One-Dimensional Linear Advection Equation 

The model problem is 

௧ݑ ൅ ௫ݑ ൌ 0		in	Ω ൌ ሾ0,1ሿ (100)

with periodic boundary condition. Three different types of initial conditions are considered in 
this study, namely sine wave, Gaussian exponential wave and square wave. We consider these 
three waves as three different levels of smoothness of initial disturbance.  The simulations have 
been conducted within a domain with twenty P8 elements, where P indicates the order of the 
approximation polynomial within each element. The results are depicted in Figure 5 for different 
types of initial conditions. In Figure 5(a), the solution without using filtering or entropy viscosity 
is depicted in comparison with the exact solution. As it is clearly shown, for the sine wave the 
unaltered DSEM method is able to generate a solution with a good agreement to exact solution. 
For this smooth initial condition, there are no oscillations in the results after 20 time units. We 
can also use this case to assess the numerical diffusion introduced by the filtering and the EV 
method using the results displayed in Figure 5(b),(c). By filtering from P8 to P5, we cannot see 
any significant diffusion error, although a slight dispersion error is visible after 20 periods, as 
evident by the slight shifting of the wave to the right of the exact solution. In contrast, applying 
EV damps the amplitude of the wave by about 5% and this may be interpreted as a measure of 
the diffusion error. There is also a visible dispersion error associated with EV, larger than that 
introduced by the filtering. 

As the next test case, we have combined a Gaussian exponential wave and a square wave to 
analyze the stability and accuracy of the DSEM method in comparison to the results obtained 
after using filtering or EV. Figure 6(a) shows a comparison between the exact solution and the 
unaltered DSEM results. As seen from the figure, after 5 time units relatively large oscillations 
appear on top and around the square. It is clear that the unaltered DSEM method is not capable 
of handling abrupt discontinuities in the solution and we need some remedy to overcome this 
problem. In Figure 6(b) and 2(c) the results after applying filter and EV are shown. While 
filtering removes the high-frequency oscillations, it is clearly ineffective in providing a 
completely oscillation-free solution. However, we can clearly see that EV is able to damp the 
oscillations and smoothen the solution without incurring a significant loss of accuracy. 
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Figure 5: Solution of the Linear Advection Equation for an Initial Sine Wave in a Domain with 20 P8 

Elements at t=20  

 

 

 
Figure 6: Solution of the Linear Advection Equation for an Initial Combined Square and Exponential Wave 

in a Domain with 20 P8 Elements at t=5 
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4.1.2 One-Dimensional Inviscid Burgers Equation 

The model problem for this case is 

௧ݑ ൅ ௫ݑݑ ൌ 0		in		Ω ൌ ሾ0,1ሿ (101)

with periodic boundary conditions. We study this case for three different initial conditions and 
compare the solutions with and without EV. Filtering proved not to be helpful in removing 
oscillations in this case, as we also saw in linear advection problem. Figure 7(a) shows the results 
for a sine wave initial condition ܷ଴ሺݔሻ ൌ sinሺ2ݔߨሻ. As seen in the figure, the initial sine wave is 
being deformed in time until a shock forms at ݔ ൌ 0.5. The unaltered DSEM code is capable of 
handling this problem smoothly with no oscillations. Results from EV method are also stable 
with negligible deviations from the exact solution because of the added diffusion. 

 

 
Figure 7: Solution of the Inviscid Burgers Equation for an Initial Sine Wave with 20 P16 Elements  

 
Figure 8: Solution of the Inviscid Burgers Equation for an Initial Exponential Wave with 20 P16 Elements  

In Figure 8 results are presented for the following initial data with and without using the EV 
method: 

ሻݔ଴ሺݑ ൌ ൜0.5 ൅ ݁ିଷ଴଴ሺ௫ି଴.ଷሻ
మ							

if |ݔ െ 0.3| ൑ 0.15
0.5																																						   otherwise

 (102)
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The figure shows that the wave initially starts tilting to the right and as soon as the shock forms it 
starts moving. It is obvious that the DSEM method is not able to capture the dynamics of this 
shock and produces severe oscillations. In contrast, Figure 8(b) shows that enhancing DSEM 
with EV substantially reduces the magnitude of the oscillations and, with the exception of some 
small wiggles near the shock, the solution can otherwise be considered smooth. It is also 
worthwhile to mention that the remaining oscillations would not grow in time in the case with 
EV, while the big oscillations in Figure 8(a) grow in time and we are not able to obtain a solution 
for longer times.   

 
Figure 9: Solution of the Inviscid Burgers Equation for an Initial Exponential Wave with 20 P16 Elements  

As the last case we consider a square wave as initial condition and this is the most abrupt profile 
we are going to test the method with. As we can see in Figure 9(a), even for a short time (t=0.15) 
the unaltered DSEM method produces very oscillatory solution and is not stable. Figure 9(b) 
shows the results for DSEM enhanced with EV for three different times and it is clearly seen that 
the solution is generally smooth and stable; the small wiggles behind the shock are not growing 
in time. We believe that these remaining oscillations can be removed with further fine-tuning of 
the method. It is also important to mention that the expansion wave, on the left, is simulated 
accurately with or without EV. 

4.2 Entropy Viscosity Method in 2D  

To test the performance and accuracy of the developed 2D, DSEM-EV code a moving shock 
problem is considered. Computations show that the DSEM-EV method is able to capture shocks 
while removing spurious Gibbs oscillations. Through a parametric study into the effect of grid 
resolution, we show that shocks are captured sharply with the EV method within only a few 
quadrature points, requiring less resolution than lower-order Roe solver.  

Treatment of the boundaries and interfaces plays a major role in obtaining a stable and accurate 
solution. Figure 10 shows a comparison between the solution obtained using the unaltered 
DSEM Euler solver and the solution obtained from EV-DSEM Euler solver without having 
boundary and interface treatment. Although the oscillations tend to disappear after using EV 
method but we could not obtain a stable solution after the shock reaches the interface. After 
updating the EV-DSEM code to treat the boundary and interfaces this issue was resolved. 
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(a) Unaltered	DSEM	Euler	Solver	t=0.02																																																		(b)	EV‐DSEM	Euler	Solver	t=0.02	

Figure 10: Velocity and Temperature Profiles with 20 Elements 

4.2.1 Moving Shock Problem 

As we mentioned, updating the code and adding the feature to treat the boundary and interfaces 
to enforce the C0 continuity of entropy fluxes we were able to achieve stable solution for the 
moving shock problem using EV-DSEM Euler solver. To demonstrate this, we consider a 
moving shock problem in 2D. Figure 11 shows the initial and boundary conditions as well as a 
sample grid. A slip boundary condition is applied to lower and upper walls.  

 

 

 
Figure 11: Grid and Initial Mach Number Distribution for the Moving Shock Problem 

 

 
 Figure 12: Velocity and Temperature Plots for the Moving Shock Problem with 2 P17 Elements at Different 

Times 
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As seen in  Figure 12, a smooth decrease in velocity field is considered initially at x=1.1. This 
velocity field transitions into a shock as it moves towards the end of the domain.  Figure 12 
shows the results of the computation with only two elements in x-direction and a very high-order 
polynomial of 17. 

It is clearly seen that the Gibbs oscillations are entirely suppressed, and the shock smoothly 
passes through the interface at x=2.5. Most importantly, the solution is stable and smooth, 
whereas computation without EV is unstable. This shows a proof-of-concept of the EV method. 
The EV method dynamically determines an appropriate artificial viscosity at the shock location, 
as seen in Figure 13,in regions where Gibbs oscillations are present. 

 
Figure 13: Sample Plot of EV Viscosity and its Corresponding Velocity Field for a Case with 2 P17 Elements 

at t = 0.5 

It is of interest to investigate the effect of influential parameters on the magnitude of the error. 
We first investigate the effect of the number of elements in the domain.  

Effect of the Number of Elements 

We present the results for three different cases at a certain time. We consider P4 elements and 
show the results for grids with 2, 4, 6 and 8 elements in the domain. Table 5 compares the RMS 
of the error for each of these cases relative to the high-resolution case with 400 P1 elements, 
which we consider as the reference case with highest accuracy. As we can see, with increasing 
the number of elements in the domain the error decreases drastically. A comparison between the 
velocity profiles obtained with the EV method with 8 P4 elements and the Euler solver (without 
EV) with 400 P1 elements is shown in Figure 14. This comparison reveals a good agreement 
between the results obtained from these two approaches. As expected, the application of the EV 
method reduces the sharpness of the shock slightly, but produces a stable solution with a 
significantly smaller number of grid points.  

Effect of the Polynomial Order 

A similar approach is used to study the effect of the polynomial order on the error. We used 4 
elements with different polynomial orders to compare the error. A comparison of the errors in 
Table 5 and Table 6 reveals that, for the same total number of grid points, using higher order 
polynomial is more effective in decreasing the error than using higher number of elements. This 
trend is expected in spectral h/p methods, and the results here demonstrate that this behavior does 
not change with implementation of the EV method. 
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Figure 14: Comparison between Velocity Profiles at t = 0.75 Obtained Using the DSEM-EV with 8 P4 

Elements and the DSEM (without EV) with 400 P1 Elements 

Table 5: RMS Error with P4 Approximation for a Different Number of Elements 

Number of Elements 2 4 8 16 

RMSE 2.28E-1 1.43E-1 5.80E-2 2.10E-2 

 

Table 6: RMS Error Using Four Elements with Different Polynomial Orders 

Polynomial order 2 3 4 6 12 

RMSE 2.82E-1 1.81E-1 1.04E-1 5.10E-2 1.61E-2	

 

4.3 Performance of Chemistry Model 

To compare the performance of the different mechanisms and models, a simple reaction problem 
is considered. This problem is a perfectly-stirred, premixed, iso-pressure reactor. The species and 
energy equations for this problem are given by, 

 (103) 

 (104) 

In the latter equation, hs and h° are sensible and formation enthalpies, respectively. The 
numerical solution begins from an initial temperature and species mass fractions and then the 
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two mentioned equations are solved explicitly for new values of temperature and species mass 
fractions. As long as the time step is kept small enough, the explicit solver can be used.   

The results obtained for different mechanisms are compared in Figures 13-17. According to these 
figures, the 4-step reduced mechanism acts completely different from the other mechanisms. The 
two skeletal mechanisms have mostly the same performances. All mechanisms except the 4-step 
one, predict the same value for the ignition delay.   

 

 
Figure 15: Temperature vs. Time for Different Mechanisms, (φ =1.0) 

 

 
Figure 16: Mixture Density vs. Time for Different Mechanisms, (φ = 1.0) 
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Figure 17: Mole Fraction of H2 vs. Time, (φ = 1.0) 

 

Figure 18: Mole Fraction of O2 vs. Time, (φ = 1.0) 

 

 
Figure 19: Mole Fraction of OH vs. Time, (φ = 1.0) 

 

The results obtained by our in-house code are compared to those of CHEMKIN in this section. 
Although the reaction parameters are not identical for the compared models, we have found the 
results obtained by our in-house chemistry code to be the same as those of the CHEMKIN. This 
is illustrated in Figures 18-22, where the temporal variation of the temperature, mole fractions of 
some species, and mixture density for the 16-step and 37-step mechanisms obtained by our in-
house code and CHEMKIN are compared. 
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Figure 20: Temperature vs. Time for the 16-step 
Skeletal Mechanism and Different Values of 

Equivalence Ratio 

 

Figure 21: Temperature vs. Time for the 37-step 
Detailed Mechanism and Different Values of 

Equivalence Ratio 

 

Figure 22: Mole Fraction of H2, O2, OH, and H2O 
vs. Time for the 16-step Skeletal Mechanism 

 

Figure 23: Mole Fraction of H2, O2, OH, and H2O 
vs. Time for the 37-step Detailed Mechanism 
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Figure 24: Mixture Density vs. Time for the 16-step Skeletal and the 37-step Detailed Mechanisms (φ = 1.0)  

In Figure 25, the Cp of the mixture has been depicted versus time for different mechanisms. 

 
Figure 25: Mixture of Cp vs. Time for Different Mechanisms, (φ = 1.0) 

 As mentioned before, there are three different methods for calculating the molecular viscosity 
and thermal conductivity of the species. In Figure 26 and Figure 27, these three methods have 
been compared for the 37-step detailed mechanism and equivalence ratio of unity.  
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Figure 26: The Viscosity of H2, O2, H2O, and OH Calculated from Different Methods for the 37-step 

Detailed Mechanism vs. Time, (φ = 1.0) 

 

 
Figure 27: The Conductivity of H2, O2, H2O, and OH Calculated from Different Methods for the 37-step 

Detailed Mechanism vs. Vime, (φ = 1.0)

 
The other important transport property is the binary diffusion coefficient between species i and j. 
For the mechanisms that contain 9 species, there exist 45 distinct binary diffusion coefficients. 
Figure 28 shows the trend of diffusion coefficients between H2 and other species for the 37-step 
detailed or the 16-step skeletal mechanisms.  
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Figure 28: The Binary Diffusion Coefficients between H2 and Other Species Multiplied by Pressure vs. 

Temperature 

As mentioned before, there are different approaches and approximations for calculating the 
mixture viscosity and conductivity. To compare these different approximations, we examine the 
performance of all methods used for calculating the mixture viscosity and conductivity for the 
same problem, i.e. using the 37-step detailed mechanism for the equivalence ratio of unity. In 
this problem the properties of the individual components are calculated using the NASA 
formulas.  According to Figure 29, the third approximation yields values for the mixture 
viscosity that are near the prediction of the theoretical method.  

 
Figure 29: The Mixture Viscosity Calculated from Different Methods vs. Time for the 37-step Detailed 

Mechanism, (φ = 1.0) 

As shown in Figure 30, the first approximate method has the best prediction for the mixture 
thermal conductivity compared to the exact method. As a conclusion, we can use the third and 
first approximate methods to calculate the mixture viscosity and thermal conductivity, 
respectively, instead of the theoretical methods without facing any significant error. It must be 
noted that if we use this combination of approximate methods, similar to what has been done in  



 

 
Approved for public release; distribution unlimited. 

44

Figure 29 and Figure 30, then the computational cost would be only one-fifth of that in the case 
in which the exact methods are used for the calculation of mixture properties.    

 
Figure 30: The Mixture Thermal Conductivity Calculated from Different methods vs. Time for the 37-step 

Detailed Mechanism, (φ = 1.0) 

Finally, it is useful to note that, if one uses either NASA formula for the transport properties of 
the individual components or the third-order polynomials fitted to CHEMKIN data, one obtains 
similar results for the mixture properties. This is confirmed in Figure 31 where the different 
methods for the calculation of mixture properties have been used for the hydrogen combustion 
simulations with the 37-step detailed mechanism. 

For the simulations of other (hydrocarbon) fuels such as ethylene a procedure similar to that 
described above for the hydrogen may be used. However, the time step for some of the reaction 
steps for hydrocarbon fuels might become much smaller than those of the flow and mixing. This 
requires the use of implicit methods and ODE solvers.  Additionally, the reaction mechanisms 
for hydrocarbons have to be reduced. We will use the latest reduced mechanisms for these fuels. 

 
Figure 31: (a) Mixture Viscosity and (b) Thermal Conductivity vs. Time for the 37-step Detailed Mechanism 
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4.4 Combustion of Hydrogen in Spatially Developing Mixing Layers 

The spatially developing, reacting subsonic and supersonic mixing layers have been simulated 
with the hybrid LES/FMDF methodology and reaction models and property relations described 
in the previous section. The simulated mixing layer is composed of non-premixed streams of 
diluted hydrogen and air. The chemical reaction of hydrogen and air is modeled with the 37-step 
detailed mechanism. The filtered compressible Navier-Stokes equations are solved with high 
order Eulerian finite-difference (FD) methods. The hydrogen-air mixing and combustion are 
computed by solving the FMDF equation via the Lagrangian Monte Carlo particle method. The 
consistency between the LES-FD and FMDF-MC methods for the fuel mass fraction and 
temperature is investigated in details below. 

In LES/FMDF simulation of the spatially developing, reacting mixing layer, the governing 
equations are solved using 4th order spatial compact scheme with 3rd order Runge-Kutta method 
for time marching. The velocity and pressure fields are calculated using the finite difference 
approach, while the mass fractions of all nine species as well as the reaction terms are computed 
using the Lagrangian FMDF solver. Temperature is found from both FD and FMDF solvers in 
order to investigate the consistency between the predictions of the Eulerian and Lagrangian 
approaches.  

In the simulated subsonic and supersonic mixing layer streams are composed of cold diluted 
hydrogen (2H2+N2) in one stream and hot air (O2+3.76N2) in another stream. After initialization 
of the flow, the compressible gas dynamic equations are solved until the mixing layer is 
developed.  For this calculation, the distributions of fuel and oxidizer are also obtained at each 
time step by solving a filtered passive scalar equation. After this stage, the Monte Carlo particles 
are distributed in the domain and the reacting LES/FMDF simulations are conducted. At the 
second stage all mass fractions are obtained via the FMDF method. In all simulations, six 
particles per grid are used.  The transport properties such as the viscosity and the thermal 
conductivity and also the specific heats of the species are calculated using the polynomials, as 
explained in details in the Subsection 3.4. The mixture properties are calculated using relations 
(1-10), (1-24), and (1-25). In all simulated cases, molecular Prandtl and Schmidt numbers are 
equal to 0.72 while the turbulent value of these two numbers is chosen to be 0.75. In addition, the 
mixing layer thickness at inlet is 2.5×10-4 m. 

4.4.1 Subsonic Case 

To test the LES/FMDF methodology and to establish the reliability and the accuracy of its 
numerical solution method, we have first simulated subsonic mixing layers with and without 
combustion. Supersonic mixing layer are considered next. The mixing layer inflow and initial 
conditions are shown schematically in Figure 32. The tangent hyperbolic profiles for the 
streamwise velocity and mass fractions of fuel and oxidizer are used to initialize the domain. The 
fuel stream has a lower speed and temperature than the oxidizer stream.  
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Figure 32: Schematic View of Subsonic Mixing Layer and Initial Conditions 

The scatter plots of fuel mass fraction and temperature, obtained from LES-FD and FMDF-MC 
data, for the nonreacting subsonic mixing layer are shown in Figure 33. There is a good 
correlation between LES-FD and FMDF-MC results, indicating the accuracy of both components 
of the hybrid LES/FMDF flow solver for the simulated nonreacting mixing layer.   

 

 
Figure 33: Scatter Plots of (a) Hydrogen Mass Fraction, and (b) Temperature, Obtained by LES-FD and 

FMDF-MC 

Figure 34 illustrates the snapshots of the mole fractions of the nine species and the released heat 
(J/Kg.s) in the reacting case. In this simulation, Smagorinsky eddy viscosity coefficient CS is 
0.028 and the filter width is twice as the computational grid size. The coefficient Cφ in the 
mixing frequency term (Eq. (62)) has been considered to be 3.5. According to these figures, the 
mole fraction of HO2 and H2O2 are small compared to other species. But contrary to the 
presumption of the reduced mechanisms, mole fraction of OH is comparable to those of H and O.    
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Figure 34: Contours of Instantaneous Species Mole Fractions and Heat of Reaction (J/Kg.s) 

For the conditions mentioned above, the temperature and mass fraction of hydrogen predicted by 
LES-FD are depicted in Figure 35 versus the corresponding values calculated by FMDF-MC. 
According to these scatter plots, the correlations between the results of LES-FD and FMDF-MC 
are very high, indicating that the numerical solution of LES/FMDF equations is very accurate. 
Figure 36 shows the distribution of the temperature calculated by LES-FD and FMDF-MC 
versus the mixture fraction. The overall trends of both plots as well as the upper and lower limits 
are the same.  
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Figure 35: Scatter Plots of (a) Hydrogen Mass Fraction, and (b) Temperature, Obtained by LES-FD and 

FMDF-MC 

 
Figure 36: Scatter Plots of Temperature Predicted by (a) LES-FD, (b) FMDF-MC vs. Mixture Fraction 

 

In order to understand the effect of mixing frequency on the consistency, several values of 
coefficient Cφ were examined while keeping other conditions and parameters constant. Figure 37 
and Figure 38 show the scatter plots of temperature and mass fraction of H2 predicted by LES-
FD and FMDF-MC approaches for three different values of 2.0, 3.5, and, 5.0 of Cφ, respectively. 
In all three cases, Smagorinsky coefficient is 0.028 and the filter width is twice as the FD grid 
size. According to these graphs, as coefficient Cφ increases, the consistency between the results 
is slightly improved. Nevertheless, the consistency between LES-FD and FMDF-MC results 
remains to be very high in all cases. This again indicates the reliability of the hybrid LES/FMDF 
methodology and its numerical solution. It should be noted here that for the case with 
combustion, LES-FD results are computed by using the reaction source/sink terms obtained from 
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FMDF and MC particles. This is only possible in our hybrid LES/FMDF solver since the 
reaction is closed in the FMDF formulation. In other LES models the very nonlinear and 
complex SGS reaction terms have to be modeled! 

 

 
Figure 37: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) Cφ=2.0 and 

(b) Cφ=3.5, (c) Cφ=5.0 Conditions 

 
Figure 38: Scatter Plots of Temperature Predicted by LES-FD and FMDF-MC for (a) Cφ=2.0 and (b) 

Cφ=3.5, (c) Cφ=5.0 Conditions 

Another factor that might affect the consistency is the models used for the subgrid scale stress 
and scalar flux models. Ideally we do not expect the models to affect the consistency. However, 
in the performed simulations, the value of the Smagorinsky coefficient and the filter width are 
significant. The increment in value of any of these two variables leads to the greater value of 
eddy viscosity. In Figure 39(b) and Figure 40(b), the value of eddy viscosity is four times greater 
than that of case (a). For both simulations Cφ is 3.5 and other conditions are the same. According 
to these graphs, as the eddy viscosity increases, the consistency is slightly improved.  
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Figure 39: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) =Grid 

Size and (b) =2×Grid Size Filters 

 

Figure 40: Scatter Plots of Temperature Predicted by LES-FD and FMDF-MC for (a) =Grid Size and (b) 

=2×Grid Size Filters 

4.4.2 Supersonic Case 

The configuration of simulated supersonic mixing layer has been illustrated in Figure 41.  For 
this set of conditions, the convective velocity and Mach number are equal to 924 m/s and 0.20, 
respectively. Similarly to the subsonic case, the fuel stream has a lower speed and temperature 
than the oxidizer one.  






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Figure 41: Schematic View of Supersonic Mixing Layer and Initial Conditions 

Figure 42 shows the scatter plots of H2 mass fraction and temperature calculated by LES-FD and 
FMDF-MC methods for the nonreacting supersonic mixing layer. In this simulation, Cφ is equal 
to 3.5 and the Smagorinsky coefficient CS is 0.028. 

 
Figure 42: Scatter Plots of (a) Hydrogen Mass Fraction, and (b) Temperature, Predicted by LES-FD and 

FMDF-MC 

The snapshots of species mole fractions as well as the combustion heat release (J/Kg.s) in the 
reacting case are presented in Figure 43. In this simulation, the Smagorinsky eddy viscosity 
coefficient is 0.028 and the filter width is twice as the computational grid size. The coefficient Cφ 
in the mixing frequency term has been considered to be 3.5.   
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Figure 43: Contours of Instantaneous Species Mole Fractions and Heat of Reaction (J/Kg.s) 

For the above-mentioned conditions, scatter plots of temperature and mass fraction of H2, 
obtained by LES-FD and FMDF-MC methods are shown in Figure 44. The scattering in these 
data is less than those shown in the subsonic flow. Specifically, the mass fractions of the fuel 
calculated by Eulerian and Lagrangian equations are highly correlated and fully consistent. The 
instantaneous values of the temperature obtained by LES-FD and FMDF-MC in the whole 
domain are plotted versus mixture fraction in Figure 45. These plots again show the very good 
consistency between the predictions of two methods.  

 
Figure 44: Scatter Plots of (a) Hydrogen Mass Fraction, and (b) Temperature, Predicted by LES-FD and 

FMDF-MC 
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Figure 45: Scatter Plots of Temperature Predicted by (a) LES-FD and (b) FMDF-MC vs. Mixture Fraction 

In order to understand the effect of Cφ on the consistency, all conditions are kept the same but 
three different values of Cφ are examined. According to Figure 46 and Figure 47, the consistency 
between the LES-FD and FMDF-MC results remain unchanged as Cφ varies. But the consistency 
between the temperatures is improved slightly as Cφ is increased.  

 
Figure 46: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) Cφ=2.0, (b) 

Cφ=3.5 and (c) Cφ=5.0 Conditions 

 
Figure 47: Scatter Plots of Temperature Predicted by LES-FD and FMDF-MC for (a) Cφ=2.0, (b) Cφ=3.5 

and (c) Cφ=5.0 Conditions 
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The eddy viscosity has a significant effect on the consistency. According to Figure 48 and Figure 
49, when the value of Cφ is fixed to 3.5, as the filter width is doubled, the fuel mass fraction and 
temperature become more consistent. The doubling of the filter width can be viewed as 
increasing the Smagorinsky coefficient CS. 

 

Figure 48: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) =Grid 

Size and (b) =2×Grid Size Filters 

 

Figure 49: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) =Grid 

Size and (b) =2×Grid Size Filters 

The last simulated flow considered in this report is a three-dimensional spatially developing 
supersonic reacting mixing layer. Due to the large number of computational cells and MC 
particles, a parallel processing technique for the hybrid LES-FD/FMDF-MC methodology was 
used. The parallelization method is similar to the second method described in reference [22]. The 









 

 
Approved for public release; distribution unlimited. 

55

initial and inflow conditions of the two initially non-premixed fuel and oxidizer streams are 
shown schematically in Figure 50. For this set of conditions, the convective velocity and Mach 
number are 872.4 m/s and 0.277, respectively. The consistency between the LES-FD and FMDF-
MC values of the fuel mass fraction and temperature in the simulated 3D nonreacting mixing 
layer is demonstrated in Figure 51.   

 
Figure 50: Schematic of Supersonic Mixing Layer and Initial Flow Conditions 

 

 
Figure 51: Scatter Plots of (a) Hydrogen Mass Fraction, and (b) Temperature Predicted by LES-FD and 

FMDF-MC Methods 

Figure 52 shows the iso-surface contours of temperature predicted by LES-FD and FMDF-MC. 
The high temperature zone (red colored) between the fuel and oxidizer streams has been marked 
as the reaction zone. The snapshots of species mole fractions as well as the combustion heat 
release (J/Kg.s) are presented in Figure 53. The scatter plots of temperature as predicted by LES-
FD and FMDF-MC versus mixture fraction are shown in Figure 54. According to these figures, 
the overall behavior of temperatures obtained by LES-FD and FMDF-MC are the same, but the 
results of LES-FD are more scattered. This scattering is more visible along the line on the right 
side of the peak temperature. This shows the weakness of the FD approach when dealing with 
the sharp gradients.  The overshoot and undershoot in the LES-FD results are due to limited grid 
resolutions. Contrary to LES-FD results, the FMDF-MC method does not have any problem in 
capturing sharp gradients in flow variables, thus presents a smooth temperature/mixture fraction 
plots.  

 



 

 
Approved for public release; distribution unlimited. 

56

 

 

 
Figure 52: Iso-Surface Contours of Temperature as Predicted by (a) LES-FD, and (b) FMDF-MC Methods 
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Figure 53: Iso-surface Contours of Instantaneous Species Mole Fractions and Heat of Reaction (J/Kg.s) 
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Figure 54: Scatter Plots of Temperature Predicted by (a) LES-FD and (b) FMDF-MC vs. Mixture Fraction 

To study the effect of mixing term on the consistency, two values of 2.5 and 3.5 were used for 
the coefficient Cφ while other conditions were kept the same. Figure 55 and Figure 56 show the 
scatter plots of mass fraction of H2 and temperature for these two cases. Similar to the planar 
reacting subsonic and supersonic mixing layers, as the value of Cφ is increased, the FD and MC 
predictions become slightly more correlated. But there is an optimum value for Cφ that was 
found to be around 3.5 for which the highest consistency is achieved.   

 

 
Figure 55: Scatter Plots of Hydrogen Mass Fraction Predicted by LES-FD and FMDF-MC for (a) Cφ=2.5 and 

(b) Cφ=3.5 Conditions 
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Figure 56: Scatter Plots of Temperature Predicted by LES-FD and FMDF-MC for (a) Cφ=2.5 and (b) Cφ=3.5 

Conditions 

4.5 Implementation of FMDF into DSEM 

Several simulations were performed on the free shear flow case to validate the particle-tracking 
algorithm as well as the calculation and comparison of scalar density. In the first test case the 
flow is periodically forced in the vertical direction at the inlet to accelerate the formation of 
vortical structures. At each time step particles are seeded at predetermined locations along the 
inlet and are assigned the same velocity as the local fluid velocity. On the contrary, the second 
flow does not include forcing and particles are seeded at a constant mass flow rate in a uniformly 
random fashion across the inlet. The second case allows us to test the consistency between the 
Eulerian and Lagrangian approximations. 

4.5.1 Effect of Inertia on Fluid Particles 

As a first test, we considered both massless and inertial particles to assess the prediction of the 
code against the well-known physical behaviors. For inertial particles we used the full particle 
equations of motion, which includes the Lagrangian equations for both position and velocity of 
the particle.   

Three cases were simulated with varying Stokes numbers for the particles. The Stokes number is 
defined as the ratio of the particle time constant to the carrier phase time constant 

ݐܵ ൌ
߬௣ ௙ܷ

∗

௙ܮ
∗  (105) 

Here ߬௣ is the characteristic time attributed to the particle, otherwise referred to as response time, 

௙ܷ
∗ is the characteristic velocity of the flow, typically taken as the inlet velocity in a shear flow, 

and ܮ௙
∗  is the characteristic length. The particle routines in the DSEM code accept ߬௣ as a 

parameter, and the fluid characteristics are based on boundary/initial conditions. Note that for a 
massless fluid particle St=0. 
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For the case of a high Stokes number, St=2.73, the inertial particles characteristic time is greater 
than the largest time scales of the carrier phase. Therefore, the particles do not respond to small 
scales of the flow and escape the vortical structures formed by the shear layer. Such an effect is 
demonstrated in Figure 57, where the initial forcing condition in the y-direction applied at the 
inlet causes the particles to spread in the y-direction of the domain. Note that the figure shows 
the locations of all the particles present in the computational domain at a given time. 
Alternatively, for St=1.0 the characteristic times of the fluid and particles are comparable. 
Although the particles carry inertia, the flow field affects their behavior. Such an effect is seen in 
Figure 58, where the profile of shear flow may be seen in the particles locations. Finally, Figure 
59 shows that massless fluid particles follow vortical motions of the flow, and their locations 
resemble the Eulerian flow field. Such particles are necessary for the FMDF method, and it may 
be seen in Figure 59 that they behave as expected. 

 
Figure 57: Locations of all Particles with St = 2.73 at a Given Time 

 
Figure 58: Locations of all the Particles with St = 1 at a Given Time 

 
Figure 59: Locations of all the Massless (Fluid) Particles (St=0) at a Given Time 
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4.5.2 Comparison of Eulerian and Lagrangian Approximations 

A subsonic free shear flow was selected as the test case for the hybridized DSEM/FMDF code. 
The DSEM and ensemble grids may be seen in Figure 3 and Figure 4, respectively. Initial 
conditions for velocity and density were imposed on the carrier phase as follows: 

ݑ ൌ ଵܷ ൅ ܷଶ
2

൅ ଵܷ െ ܷଶ
2

tanh ൬
ݕ
௪ߜ2

൰	

ݒ ൌ 0	

ߩ ൌ
ଵߩ ൅ ଶߩ

2
൅
ଵߩ െ ଶߩ

2
tanh ൬

ݕ
௪ߜ2

൰ 

where	 ଵܷand ܷଶ are the fluid inlet velocities in the top and bottom layers, respectively, and ߜ௪ is 
the vorticity thickness. The above conditions were then interpolated to the particle locations as 
seen in Figure 60 for density. Similarly, the inlet conditions were tangentially hyperbolic along 
the y-axis with respect to velocity and density. Unlike the previous section, no velocity or 
forcing was imposed along the y-direction. The Lagrangian boundary conditions were imposed 
by taking advantage of the matching condition described in the section above. The set values for 
the constants were 

ଵܷ ൌ 150	
ܷଶ ൌ 75	
ଵߩ ൌ 1.1	
ଶߩ ൌ 0.9	
௪ߜ ൌ 0.01 

 
Figure 60: Shear Flow Initial Condition: Lagrangian Particles and Eulerian Density Contours 
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Figure 61: Fluid Density Profile at x=0.30, Calculated by Eulerian and Lagrangian Methods 

Figure 61 shows consistency between our Eulerian and Lagrangian methods. In this figure, we 
depict the cross-stream density sampled at a distance of x=0.30 along the stream. It is evident 
that the Lagrangian (FMDF) prediction is consistent to the Eulerian (DSEM) prediction.  

The oscillations seen in Figure 61 may be attributed to statistical error. From a statistical 
standpoint it would be ideal to have infinitely many particles in an infinitely small domain. 
However due to computational overhead it is necessary to select a sufficient number of particles 
with sufficiently small domains as to ensure statistical accuracy while minimizing dispersive 
error. Such parameters cannot be predicted a priori; however it is typically considered that for 
such a simulation 40 particles per ensemble domain are sufficient. Yet in areas of high 
variability, the impact of a single particle entering or leaving a domain may manifest itself as an 
oscillation in the density. In order to minimize such oscillation it is necessary to adjust the 
weighting of said particles so that an individual particle carries less contribution to the overall 
calculation of density within the ensemble domain and a larger sample must be taken [17]. To 
employ such a method, it would be necessary to first parallelize the DSEM code so that more 
particles may be computed in a timely manner. This will be done in Phase II. 
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5.0 Conclusions 

The ultimate goal of this project is to develop and validate a novel numerical code for simulation 
of high speed, reacting flows based on several innovative methods. The work during Phase I was 
devoted to providing proof-of-concept for each of the following three components of the study: 

1. Implementation of the EV method in the DSEM code 
2. Development of FMDF for high-speed flows 
3. Implementation of FMDF in DSEM 

In Phase I, in-house 1D and 2D spectral element codes were developed to investigate the idea of 
using an artificial dissipative term in conservation laws to avoid numerical oscillations due to 
high-order approximations in conjunction with abrupt changes in the solution (physical shocks). 
Increasing the magnitude of the local viscosity proportional to the rate of local entropy 
production should not affect the solution where the flow is smooth while efficiently removing 
spurious oscillations.  

In 1D simulations, explicit filtering was also tested as an alternative remedy and the results of the 
two approaches were compared for two model problems. For the linear advection problem, the 
results showed that, filtering is effective in removing high-frequency oscillations but does not 
produce a completely oscillation-free solution. However, this was not the case for the inviscid 
Burgers problem. The 1D results obtained by entropy viscosity were promising and even for very 
sharp discontinuities this method was able to produce relatively smooth solutions and remove 
major instabilities in the solution.  

In 2D simulations, where we focused on Euler equations, a special attention was paid to 
boundary and interface treatment in the 2D, DSEM-EV code. This effort led to successful 
implementation of the EV method in 2D. Specifically, the interface issue that was observed in 
our earlier results was completely addressed and resolved.   

Several test cases were simulated with the DSEM-EV code and an effort was made to quantify 
the magnitude of the error in each case against a (high-resolution) reference case. It was shown 
that, the error decreases by increasing either the number of elements or the polynomial order. For 
the same total number of nodes, using higher polynomial order decreases the magnitude of the 
error more effectively. Consistency and stability of the code was demonstrated and the code is 
ready to be used for more complex geometries in 2D.  

Development of FMDF for high-speed flows started with developing an in-house reaction 
module for numerical simulation of hydrogen in air combustion with different chemical kinetics 
mechanisms.  Different methods for calculating the species and mixture properties were 
investigated, and efficient ways to calculate the thermodynamic and transport properties were 
chosen. The results obtained by our reaction module for a premixed stirred reactor were 
compared with those of CHEMKIN. 

The LES-FMDF method was used together with the 37-step detailed kinetics mechanism for 2D 
and 3D simulations of hydrogen-air combustion in planar subsonic and supersonic mixing layers. 
The consistency between the species mass fractions and temperatures predicted by LES-FD and 
FMDF-MC methods was established. The effects of mixing frequency and eddy viscosity on the 
computed results and the consistency were reported. The LES-FMDF method is ready to be used 
for more complex high speed, reacting flows involving complex chemical kinetics. 
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Preliminary work started in Phase I for implementation of FMDF in DSEM. A particle-tracking 
algorithm suitable for use with FMDF was developed and tested in the 2D DSEM code. 
Furthermore, with the addition of the particle density and weighting routines, we were able to 
approximate a scalar, fluid density, in the Lagrangian frame and perform a consistency check 
against the Eulerian approximation.  We showed the accuracy of our FMDF algorithm to 
produce suitable results. With additional work and the implementation of additional SDE’s, it 
will be possible to solve for other scalars such as temperature and reactions. 
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List of Acronyms, Abbreviations, and Symbols 

AB Adams-Bashforth 

CFD Computational Fluid Dynamics 

DPT Discrete Polynomial Transform 

DSEM Discrete Spectral Element Method 

EV Entropy Viscosity 

EES Enabling Energy Systems 

FD Finite Difference 

FMDF Filtered Mass Density Function 

gg Gauss-Gauss 

gll Gauss-Lobatto-Lobatto 

LES Large-Eddy Simulation 

lg Lobatto-Gauss 

MC Monte Carlo 

PDE Partial Differential Equation 

PDF Probability Density Function 

SDE Stochastic Differential Equation 

SGS Sub-Grid Scale 

St Stokes Number 
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